Mineral Mapping Using the Automatized Gaussian Model (AGM)—Application to Two Industrial French Sites at Gardanne and Thann
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites, Associated Processes and Spectral Signatures of Main Materials
2.1.1. Altéo Environnement plant, Gardanne, France
2.1.2. Millennium Inorganic Chemicals and Séché éco Services plants, Thann, France
2.1.3. Summary of Wavelength Positions for the Main Characteristic Absorption Features for the Two Sites
2.2. Methods
2.2.1. Atmospheric Correction of the Images
2.2.2. AGM Spectral Deconvolution Method
2.2.3. Mineral Database and Identification Procedure
3. Results
3.1. Mineral Identification at Gardanne
3.1.1. AGM Spectral Deconvolution Results
3.1.2. Maps
3.2. Mineral Identification at Thann
3.2.1. AGM Spectral Deconvolution Results
3.2.2. Maps
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Swayze, G.A.; Smith, K.S.; Clark, R.N.; Sutley, S.J.; Pearson, R.M.; Vance, J.S.; Hageman, P.L.; Briggs, P.H.; Meier, A.L.; Singleton, M.J.; et al. Using Imaging Spectroscopy to Map Acidic Mine Waste. Environ. Sci. Technol. 2000, 34, 47–54. [Google Scholar] [CrossRef]
- Mars, J.C.; Crowley, J.K. Mapping mine wastes and analyzing areas affected by selenium-rich water runoff in southeast Idaho using AVIRIS imagery and digital elevation data. Remote Sens. Environ. 2003, 84, 422–436. [Google Scholar] [CrossRef]
- Rockwell, B.W.; McDougal, R.R.; Gent, C.A. Remote Sensing for Environmental Site Screening and Watershed Evaluation in Utah Mine Lands—East Tintic Mountains, Oquirrh Mountains, and Tushar Mountains; U.S. Geological Survey Scientific Investigations Report 2004-5241; USGS: Denver, CO, USA, 2005. [Google Scholar]
- Zabcic, N.; Rivard, B.; Ong, C.; Mueller, A. Using airborne hyperspectral data to characterize the surface pH and mineralogy of pyrite mine tailings. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 152–162. [Google Scholar] [CrossRef]
- Asadzadeh, S.; de Souza Filho, C.R. A review on spectral processing methods for geological remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 69–90. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; Livo, K.E.; Kokaly, R.F.; Sutley, S.J.; Dalton, J.B.; McDougal, R.R.; Gent, C.A. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. J. Geophys. Res. Planets 2003, 108, 5.1–5.44. [Google Scholar] [CrossRef]
- Sunshine, J.M.; Pieters, C.M.; Pratt, S.F. Deconvolution of Mineral Absorption Bands: An Improved Approach. J. Geophys. Res. Planets 1990, 95, 6955–6966. [Google Scholar] [CrossRef]
- Sunshine, J.M.; Pieters, C.M. Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified gaussian model. J. Geophys. Res. Planets 1993, 98, 9075–9087. [Google Scholar] [CrossRef]
- Brown, A. Spectral Curve Fitting for Automatic Hyperspectral Data Analysis. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1601–1608. [Google Scholar] [CrossRef]
- Gallie, E.A.; Lyder, D.A.; Rivard, B.; Cloutis, E.A. Technical note: equivalence of modified gaussian model (mgm) in wavenumber and gaussian in wavelength for deconvolution of hyperspectral reflectance spectra. Int. J. Remote Sens. 2008, 29, 4089–4096. [Google Scholar] [CrossRef]
- Makarewicz, H.D.; Parente, M.; Bishop, J.L. Deconvolution of VNIR Spectra Using Modified Gaussian Modeling (MGM) with Automatic Parameter Initialization (API) Applied to CRISM. In Proceedings of the Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Grenoble, France, 26–28 August 2009; pp. 1–5. [Google Scholar]
- Bishop, J.L.; Gates, W.P.; Makarewicz, H.D.; McKeown, N.K.; Hiroi, T. Reflectance Spectroscopy of Beidellites and Their Importance for Mars. Clays Clay Miner. 2011, 59, 378–399. [Google Scholar] [CrossRef]
- Pompilio, L.; Pedrazzi, G.; Sgavetti, M.; Cloutis, E.A.; Craig, M.A.; Roush, T.L. Exponential Gaussian Approach for Spectral Modeling: The Ego Algorithm I. Band Saturation. Icarus 2009, 201, 781–794. [Google Scholar] [CrossRef]
- Pompilio, L.; Pedrazzi, G.; Cloutis, E.A.; Craig, M.A.; Roush, T.L. Exponential Gaussian Approach for Spectral Modelling: The EGO Algorithm II. Band Asymmetry. Icarus 2010, 208, 811–823. [Google Scholar] [CrossRef]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. Solid Earth 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Clénet, H.; Pinet, P.; Daydou, Y.; Heuripeau, F.; Rosemberg, C.; Baratoux, D.; Chevrel, S. A New Systematic Approach Using the Modified Gaussian Model: Insight for the Characterization of Chemical Composition of Olivines, Pyroxenes and Olivine–Pyroxene Mixtures. Icarus 2011, 213, 404–422. [Google Scholar] [CrossRef]
- Whiting, M.L.; Li, L.; Ustin, S.L. Predicting Water Content Using Gaussian Model on Soil Spectra. Remote Sens. Environ. 2004, 89, 535–552. [Google Scholar] [CrossRef]
- Verpoorter, C.; Kutser, T.; Lars, T. Automated Mapping of Water Bodies Using Landsat Multispectral Data. Limnol. Oceanogr. Methods 2012, 10, 1037–1050. [Google Scholar] [CrossRef]
- Verpoorter, C.; Carrère, V.; Combe, J.-P. Visible, near-infrared spectrometry for simultaneous assessment of geophysical sediment properties (water and grain size) using the spectral derivative-modified gaussian model. J. Geophys. Res. Earth Surf. 2014, 119, 2098–2122. [Google Scholar] [CrossRef]
- Brossard, M.; Marion, R.; Carrére, V. Deconvolution of SWIR reflectance spectra for automatic mineral identification in hyperspectral imaging. Remote Sens. Lett. 2016, 7, 581–590. [Google Scholar] [CrossRef]
- Hind, A.R.; Bhargava, S.K.; Grocott, S.C. The surface chemistry of Bayer process solids: A review. Colloids Surf. A Physicochem. Eng. Asp. 1999, 146, 359–374. [Google Scholar] [CrossRef]
- Jamialahmadi, M.; Muller-Steinhagen, H. Determining Silica Solubility in Bayer Process Liquor. (Research Summary). J. Miner. Met. Mater. Soc. 1998, 50, 44–49. [Google Scholar]
- Chevdov, D.; Ostap, S.; Le, T. Surface properties of red mud particles from potentiometric titration. Colloids Surf. 2001, 182, 131–141. [Google Scholar] [CrossRef]
- Palmer, S.J.; Frost, R.L. Characterisation of bauxite and seawater neutralised bauxite residue using XRD and vibrational spectroscopic techniques. J. Mater. Sci. 2008, 44, 55–63. [Google Scholar] [CrossRef]
- Gelencser, A.; Kovats, N.; Turoczi, B.; Rostasi, A.; Hoffer, A.; Imre, K.; Nyiro-Kosa, I.; Csakberenyi-Malasics, D.; Toth, A.; Czitrovszky, A.; et al. The Red Mud Accident in Ajka (Hungary): Characterization and Potential Health Effects of Fugitive Dust. Environ. Sci. Technol. 2011, 45, 1608–1615. [Google Scholar] [CrossRef] [PubMed]
- Varnavas, S.; Achilleopoulos, P. Factors controlling the vertical and spatial transport of metal-rich particulate matter in seawater at the outfall of bauxitic red mud toxic waste. Sci. Total Environ. 1995, 175, 199–205. [Google Scholar] [CrossRef]
- Mymrin, V.A.; Vazquez-Vaamonde, A.J. Red mud of aluminium production waste as basic component of new construction materials. Waste Manag. Res. 2001, 19, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Pascucci, S.; Belviso, C.; Cavalli, R.M.; Palombo, A.; Pignatti, S.; Santini, F. Using imaging spectroscopy to map red mud dust waste: The Podgorica Aluminum Complex case study. Remote Sens. Environ. 2012, 123, 139–154. [Google Scholar] [CrossRef]
- Richter, R.; Schläpfer, D. ATCOR-4 User Guide; Version 7.0.3; DLR: Wessling, Germany; ReSe Applications: Wil, Switzerland, 2016. [Google Scholar]
- Bernstein, L.S.; Jin, X.; Gregor, B.; Adler-Golden, S. Quick Atmospheric Correction Code: Algorithm Description and Recent Upgrades. Opt. Eng. 2012, 51, 111719-1–111719-11. [Google Scholar] [CrossRef]
- Chabrillat, S.; Eisele, A.; Guillaso, S.; Rogaß, C.; Ben-Dor, E.; Kaufmann, H. HYSOMA: An easy-to-use software interface for soil mapping applications of hyperspectral imagery. In Proceedings of the EARSeL 7th SIG—Imaging Spectroscopy Workshop, Edinburgh, UK, 11–13 April 2011. [Google Scholar]
- Schlä, J.J. The Levenberg-Marquardt algorithm: implementation and theory. In Numerical Analysis; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1978; Volume 630, pp. 105–106. [Google Scholar]
- Pontual, S.; Merry, N.; Gamson, P. GMEX: Guides for Mineral Exploration: Spectral Interpretation Field Manual; AusSpec: Queenstown, New Zealand, 2010. [Google Scholar]
- Alteo. Products and Production. Available online: https://www.alteo-alumina.com/en/our-production-processes#Digestion%20of%20Bauxite (accessed on 18 January 2018).
- McArthur, L.; Greensill, C. Comparison of two NIR systems for quantifying kaolinite in weipa bauxites. Meas. Sci. Technol. 2007, 18, 3463–3470. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marion, R.; Carrère, V. Mineral Mapping Using the Automatized Gaussian Model (AGM)—Application to Two Industrial French Sites at Gardanne and Thann. Remote Sens. 2018, 10, 146. https://doi.org/10.3390/rs10010146
Marion R, Carrère V. Mineral Mapping Using the Automatized Gaussian Model (AGM)—Application to Two Industrial French Sites at Gardanne and Thann. Remote Sensing. 2018; 10(1):146. https://doi.org/10.3390/rs10010146
Chicago/Turabian StyleMarion, Rodolphe, and Véronique Carrère. 2018. "Mineral Mapping Using the Automatized Gaussian Model (AGM)—Application to Two Industrial French Sites at Gardanne and Thann" Remote Sensing 10, no. 1: 146. https://doi.org/10.3390/rs10010146
APA StyleMarion, R., & Carrère, V. (2018). Mineral Mapping Using the Automatized Gaussian Model (AGM)—Application to Two Industrial French Sites at Gardanne and Thann. Remote Sensing, 10(1), 146. https://doi.org/10.3390/rs10010146