Evaluation of Satellite-Based Precipitation Products from IMERG V04A and V03D, CMORPH and TMPA with Gauged Rainfall in Three Climatologic Zones in China
Abstract
:1. Introduction
2. Study Areas, Datasets and Methodology
2.1. Study Areas
2.1.1. Tibetan Plateau
2.1.2. Huaihe River Basin
2.1.3. Weihe River Basin
2.2. Gauge Precipitation Observations
2.3. Satellite-Based Precipitation Datasets
2.3.1. CMORPH-CRT
2.3.2. TRMM 3B42
2.3.3. IMERG V03D and IMERG V04A
2.4. Methodology
3. Results and Analysis
3.1. Tibetan Plateau
3.1.1. One and a Half Year Precipitation Analysis
3.1.2. Seasonal Scale Precipitation Analysis
3.2. Huaihe River Basin
3.2.1. One and a Half Year Precipitation Analysis
3.2.2. Seasonal Scale Precipitation Analysis
3.3. Weihe River Basin
3.3.1. One and a Half Year Precipitation Analysis
3.3.2. Seasonal Scale Precipitation Analysis
4. Discussion
5. Summary and Conclusions
- (1)
- The R-IMERG V04A product captures the spatial patterns of precipitation as well as CMORPH-CRT, R-IMERG V03D and TRMM 3B42 over the Huaihe and Weihe River Basins during the one-and-a-half-year precipitation analysis and at seasonal scales. However, the performance of R-IMERG V04A varies greatly spatially and temporally.
- (2)
- Over the Tibetan Plateau, R-IMERG V04A demonstrates the worst performance among the four satellite-based products considered here. In particular, R-IMERG V04A severely underestimates precipitation with the lowest RBs (−46.98%) during the one-and-a-half-year precipitation analysis. In addition, R-IMERG V04A seriously underestimates precipitation at the seasonal scale with the RBs ranging from −42.86% in summer to −70.62% in winter. R-IMERG V04A is not reliable with a large RRMSE (57.65% during the one-and-a-half-year precipitation analysis, ranging from 54.33% in summer to 167.74% in winter at the seasonal scale). As a result, R-IMERG V04A is not recommended for hydrological studies and monitoring of the Tibetan Plateau. Future research is needed to discover the source of this error and improve the accuracy of R-IMERG V04A precipitation estimates over the Tibetan Plateau. In contrast, R-IMERG V03D demonstrates the best performance within the Tibetan Plateau with the lowest RMSE (0.44 mm/day), RRMSE (28.37%), RB (7.46%), and the highest R (0.83) across all four products.
- (3)
- Within the Huaihe River Basin, R-IMERG V04A offers a slight advantage over the other three satellite products with the lowest RMSE (0.32 mm/day), RRMSE (11.24%) and highest R (0.96) during the one-and-a-half-year precipitation analysis. For seasonal-scale precipitation estimates, a comparison between TRMM 3B42 and R-IMERG V04A demonstrates that R-IMERG V04A estimates have higher Rs (0.93 in spring, 0.96 in summer, 0.81 in autumn, 0.92 in winter, respectively) and lower RMSEs (0.6 mm/day in summer, 0.44 mm/day in autumn).
- (4)
- Over the Weihe River Basin, in comparison with TRMM 3B42, R-IMERG V04A shows a poorer performance with higher RMSE (0.14 mm/day), RBs (4.96%) and lower R (0.8) during the one-and-a-half-year precipitation analysis. For seasonal precipitation, R-IMERG V04A is worse than TRMM 3B42 regardless of season.
- (5)
- During winter, both IMERG products tend to underestimate precipitation over the Tibetan Plateau and the Weihe River Basin. A comparison among the four satellite-based precipitation estimates shows that R-IMERG V04A and CMORPH-CRT perform worse than TRMM 3B42 in terms of RB (−70.62%, 71.52% vs. 22.9%), and R-IMERG V03D has an advantage over TRMM 3B42 with lower RB (−6.47%) at the seasonal scale over the Tibetan Plateau. Over the Weihe River Basin, both R-IMERG V03D and CMORPH-CRT are superior to TRMM 3B42 according to RBs (−11.4%, −0.66% vs. −14.8%) while R-IMERG V04A performs worse than TRMM 3B42 with higher negative RB (−46.92%).
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Lü, H.; Crow, W.; Zhu, Y.; Ouyang, F.; Su, J. Improving streamflow prediction using remotely-sensed soil moisture and snow depth. Remote Sens. 2016, 8, 503. [Google Scholar] [CrossRef]
- Lü, H.; Crow, W.T.; Zhu, Y.; Yu, Z.; Sun, J. The impact of assumed error variances on surface soil moisture and snow depth hydrologic data assimilation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 8, 5116–5129. [Google Scholar] [CrossRef]
- Lü, H.; Hou, T.; Horton, R.; Zhu, Y.; Chen, X.; Jia, Y.; Wang, W.; Fu, X. The streamflow estimation using the Xinanjiang rainfall runoff model and dual state-parameter estimation method. J. Hydrol. 2013, 480, 102–114. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 287–296. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 237–247. [Google Scholar] [CrossRef]
- The TRMM Webpage. Available online: https://pmm.nasa.gov/data-access/downloads/trmm (accessed on 5 September 2017).
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Xie, P. Algorithm Theoretical Basis Document (ATBD) Version 4.5: NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG); NASA/GSFC: Greenbelt, MD, USA, 2015. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Integrated Multi-Satellite Retrievals for GPM (IMERG) Technical Documentation; NASA/GSFC: Greenbelt, MD, USA, 2014. [Google Scholar]
- Behrangi, A.; Khakbaz, B.; Jaw, T.C.; Aghakouchak, A.; Hsu, K.; Sorooshian, S. Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol. 2011, 397, 225–237. [Google Scholar] [CrossRef]
- Kidd, C.; Bauer, P.; Turk, J.; Huffman, G.J.; Joyce, R.; Hsu, K.L.; Braithwaite, D. Intercomparison of high-resolution precipitation products over northwest Europe. J. Hydrometeorol. 2012, 13, 67–83. [Google Scholar] [CrossRef]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Am. Meteorpl. Soc. 2007, 88, 47. [Google Scholar] [CrossRef]
- Tan, M.; Ibrahim, A.; Duan, Z.; Cracknell, A.; Chaplot, V. Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens. 2015, 7, 1504–1528. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D. A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett. 2010, 37, 701–719. [Google Scholar] [CrossRef]
- Yong, B.; Ren, L.L.; Hong, Y.; Wang, J.H.; Gourley, J.J.; Jiang, S.H.; Chen, X.; Wang, W. Hydrologic evaluation of multisatellite precipitation analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resour. Res. 2010, 46, 759–768. [Google Scholar] [CrossRef]
- Anagnostou, E.N.; Maggioni, V.; Nikolopoulos, E.I.; Meskele, T.; Hossain, F.; Papadopoulos, A. Benchmarking high-resolution global satellite rainfall products to radar and rain-gauge rainfall estimates. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1667–1683. [Google Scholar] [CrossRef]
- Jiang, S.; Ren, L.; Yong, B.; Yang, H.; Yang, X.; Yuan, F. Evaluation of latest TMPA and CMORPH precipitation products with independent rain gauge observation networks over high-latitude and low-latitude basins in China. Chin. Geogr. Sci. 2016, 26, 439–455. [Google Scholar] [CrossRef]
- Alazzy, A.A.; Lü, H.; Chen, R.; Ali, A.B.; Zhu, Y.; Su, J. Evaluation of satellite precipitation products and their potential influence on hydrological modeling over the Ganzi river basin of the Tibetan Plateau. Adv. Meteorol. 2017, 2017, 3695285. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T. TRMM and Other Data Precipitation Data Set Documentation; NASA/GSFC: Greenbelt, MD, USA, 2013. [Google Scholar]
- Tesfagiorgis, K.; Mahani, S.E.; Krakauer, N.Y.; Khanbilvardi, R. Bias correction of satellite rainfall estimates using a Radar-gauge product—A case study in Oklahoma (USA). Hydrol. Earth Syst. Sci. 2011, 15, 2631–2647. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D.; Choudhury, B.J.; Garcia, M. Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeorol. 2007, 8, 1165–1183. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef]
- Huffman, G.J.B.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.H. Algorithm Theoretical Basisdocument, Version 4.1: NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (Imerg); NASA/GSFC: Greenbelt, MD, USA, 2013. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Day 1 IMERG Final Run Release Notes; NASA/GSFC: Greenbelt, MD, USA, 2015. [Google Scholar]
- Liu, Z. Comparison of integrated multisatellite retrievals for GPM (IMERG) and TRMM multisatellite precipitation analysis (TMPA) monthly precipitation products: Initial results. J. Hydrometeorol. 2015, 17, 777–790. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; Pai, D.S.; Aghakouchak, A. From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour. 2015, 88, 1–7. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; Aghakouchak, A.; Liu, Z.; Norouzi, H.; Pai, D.S. A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol. 2016. [Google Scholar] [CrossRef]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K.; Iwanami, K. Global precipitation map using satellite-borne microwave radiometers by the GSMAP project: Production and validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Chen, F.; Li, X. Evaluation of IMERG and TRMM 3b43 monthly precipitation products over mainland china. Remote Sens. 2016, 8, 472. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Behrangi, A.; Hong, Y.; Ndayisaba, F.; Hu, J.; Stepanian, P.M. Early assessment of integrated multi-satellite retrievals for global precipitation measurement over china. Atmos. Res. 2016, 176–177, 121–133. [Google Scholar] [CrossRef]
- Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM day-1 IMERG and TMPA version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, A.; Wang, Y.; Xie, P. Performance of high-resolution satellite precipitation products over china. J. Geophys. Res. Atmos. 2010, 115, 355–365. [Google Scholar] [CrossRef]
- Yu, R.; Zhou, T.; Xiong, A.; Zhu, Y.; Li, J. Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett. 2007, 34, 223–234. [Google Scholar] [CrossRef]
- The CMORPH Webpage. Available online: ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/ (accessed on 5 September 2017).
- Joyce, R.J.; Xie, P.; Yarosh, Y.; Janowiak, J.E.; Arkin, P.A. CMORPH: A “morphing” approach for high resolution precipitation product generation. In Satellite Rainfall Applications for Surface Hydrology; Gebremichael, M., Hossain, F., Eds.; Springer: Houten, The Netherlands, 2010; pp. 23–37. [Google Scholar]
- Habib, E.; Haile, A.T.; Tian, Y.; Joyce, R.J. Evaluation of the high-resolution cmorph satellite rainfall product using dense rain gauge observations and Radar-based estimates. J. Hydrometeorol. 2012, 13, 1784–1798. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Stocker, E.F. V04 IMERG Final Run Release Notes; NASA/GSFC: Greenbelt, MD, USA, 2017. [Google Scholar]
- Ahrens, B. Distance in spatial interpolation of daily rain gauge data. Hydrol. Earth Syst. Sci. 2006, 10, 197–208. [Google Scholar] [CrossRef]
- Tong, K.; Su, F.; Yang, D.; Zhang, L.; Hao, Z. Tibetan plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int. J. Climatol. 2014, 34, 265–285. [Google Scholar] [CrossRef]
- Rompaey, A.J.J.V.; Govers, G.; Baudet, M. A strategy for controlling error of distributed environmental models by aggregation. Int. J. Geogr. Inf. Sci. 1999, 13, 577–590. [Google Scholar] [CrossRef]
- Daniell, J.J. Development of a bathymetric grid for the Gulf of Papua and adjacent areas: A note describing its development. J. Geophys. Res. 2008, 113, 222–256. [Google Scholar] [CrossRef]
- Claverie, M.; Demarez, V.; Duchemin, B.; Hagolle, O.; Ducrot, D.; Marais-Sicre, C.; Dejoux, J.F.; Huc, M.; Keravec, P.; Béziat, P. Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sens. Environ. 2012, 124, 844–857. [Google Scholar] [CrossRef] [Green Version]
- Kienzle, S. The effect of DEM raster resolution on first order, second order and compound terrain derivatives. Trans. GIS 2004, 8, 83–111. [Google Scholar] [CrossRef]
- Anjum, M.N.D.; Shangguan, Y. J.; Ijaz, D.H.; Zhang, M.W. Evaluation of high-resolution satellite-based real-time and post-real-time precipitation estimates during 2010 extreme flood event in Swat river basin, Hindukush region. Adv. Meteorol. 2016, 2016, 2604980. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
Watersheds | Tibetan Plateau | Huaihe River Basin | Weihe River Basin |
---|---|---|---|
Average elevation | 4292 m | 84 m | 2173 m |
Annual average temperature | 2–5 °C | 11–16 °C | 10–13 °C |
Annual average rainfall | 482.8 m | 1100 m | 559 m |
Glaciers and permafrost | Yes | No | No |
Climate | Cold region | Semi-humid | Arid/semi-arid |
Number of stations | 96 | 29 | 12 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, G.; Lü, H.; T. Crow, W.; Zhu, Y.; Wang, J.; Su, J. Evaluation of Satellite-Based Precipitation Products from IMERG V04A and V03D, CMORPH and TMPA with Gauged Rainfall in Three Climatologic Zones in China. Remote Sens. 2018, 10, 30. https://doi.org/10.3390/rs10010030
Wei G, Lü H, T. Crow W, Zhu Y, Wang J, Su J. Evaluation of Satellite-Based Precipitation Products from IMERG V04A and V03D, CMORPH and TMPA with Gauged Rainfall in Three Climatologic Zones in China. Remote Sensing. 2018; 10(1):30. https://doi.org/10.3390/rs10010030
Chicago/Turabian StyleWei, Guanghua, Haishen Lü, Wade T. Crow, Yonghua Zhu, Jianqun Wang, and Jianbin Su. 2018. "Evaluation of Satellite-Based Precipitation Products from IMERG V04A and V03D, CMORPH and TMPA with Gauged Rainfall in Three Climatologic Zones in China" Remote Sensing 10, no. 1: 30. https://doi.org/10.3390/rs10010030
APA StyleWei, G., Lü, H., T. Crow, W., Zhu, Y., Wang, J., & Su, J. (2018). Evaluation of Satellite-Based Precipitation Products from IMERG V04A and V03D, CMORPH and TMPA with Gauged Rainfall in Three Climatologic Zones in China. Remote Sensing, 10(1), 30. https://doi.org/10.3390/rs10010030