Validation of Satellite Rainfall Products over a Mountainous Watershed in a Humid Subtropical Climate Region of Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Rain Gauge Stations
2.3. Satellite Rainfall Products
2.3.1. TRMM Multisatellite Precipitation Analysis
2.3.2. Hydroestimator Algorithm
2.4. Preparation of Reference Data
2.5. Mean Rainfall Estimation Using the Satellite Products
2.6. Evaluation of the Satellite Rainfall Products
3. Results
3.1. Daily Scale
3.2. Monthly Scale
3.3. Annual Scale
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brutsaert, W. Hydrology: An Introduction; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Tan, M.L.; Tan, K.C.; Chua, V.P.; Chan, N.W. Evaluation of TRMM product for monitoring drought in the Kelantan River Basin, Malaysia. Water 2017, 9, 57. [Google Scholar] [CrossRef]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; De Roo, A. Hydrological evaluation of satellite based rainfall estimates over the Volta and Baro-Akobo Basin. J. Hydrol. 2013, 499, 324–338. [Google Scholar] [CrossRef]
- Mehran, A.; Aghakouchak, A. Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrol. Process. 2014, 28, 2262–2270. [Google Scholar] [CrossRef]
- Wu, H.; Adler, R.F.; Tian, Y.; Huffman, J.G.; Li, H.; Wang, J. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res. 2014, 50, 2693–2717. [Google Scholar] [CrossRef]
- Villarini, G.; Krajewski, W.F. Evaluation of the research version TMPA three-hourly 0.25 × 0.25° rainfall estimates over Oklahoma. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Falck, A.S.; Maggioni, J.T.; Vila, D.A.; Diniz, F.L.R. Propagation of satellite precipitation uncertainties through a distributed hydrologic model: A case study in the Tocantins-Araguaia basin in Brazil. J. Hydrol. 2015, 527, 943–957. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Guide to Hydrological Practices: Data Acquisition and Processing, Analysis, Forecasting and Other Applications, 5th ed.; WMO: Geneva, Switzerland, 1994. [Google Scholar]
- Franchito, S.H.; Rao, V.B.; Vasques, A.C.; Santo, C.M.E.; Conforte, J.C. Validation of TRMM precipitation radar monthly rainfall estimates over Brazil. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Duan, Z.; Bastiaanssen, W.F.M. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure. Remote Sens. Environ. 2013, 131, 1–13. [Google Scholar] [CrossRef]
- Kidd, C.; Levizzani, V. Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. 2010, 15, 1109–1116. [Google Scholar] [CrossRef] [Green Version]
- Center for Weather Forecasting and Climate Studies (CPTEC). Available online: http://www.cptec.inpe.br/ (accessed on 6 April 2017).
- Scofield, R.A.; Kuligowski, R.J. Status and outlook of operational satellite precipitation algorithms for extreme-precipitation events. Weather Forecast. 2003, 18, 1037–1051. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM multisatellite precipitation analysis: Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakaruma, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Yong, B.; Liu, D.; Gourley, J.J.; Tian, Y.; Huffman, G.J.; Ren, L.; Hong, Y. Global view of real-time TRMM multisatellite precipitation analysis: Implications for its successor global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2015, 96, 283–296. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.H. NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG); Algorithm Theoretical Basis Document, Version 4.5; NASA/GSFC: Greenbelt, MD, USA, 2015.
- Curtarelli, M.P.; Rennó, C.D.; Alcântara, E.H.E. Evaluation of the Tropical Rainfall Measuring Mission 3B43 product over an inland area in Brazil and the effects of satellite boost on rainfall estimates. J. Appl. Remote Sens. 2014, 8. [Google Scholar] [CrossRef]
- Jiang, D.; Zhang, H.; Li, R. Performance evaluation of TMPA version 7 estimates for precipitation and its extremes in Circum-Bohai-Sea region, China. Theor. Appl. Climatol. 2016. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, L.; Win, K.W.W.; Ren, L.; Zhao, C.; Zhu, Y.; Jiang, S.; Liu, Y. Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data-sparse mountainous watershed in Myanmar. Remote Sens. 2017, 9, 302. [Google Scholar] [CrossRef]
- Kim, J.P.; Jung, I.W.; Park, K.W.; Yoon, S.K.; Lee, D. Hyrological utility and uncertainty of multi-satellite precipitation products in the mountainous region of South Korea. Remote Sens. 2016, 8, 608. [Google Scholar] [CrossRef]
- Alfieri, L.; Smith, P.; Thielen, J.; Beven, K. A staggered approach to flash flood forecasting—Case study in the Cevennes Region. Adv. Geosci. 2011, 29, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Alfieri, L.; Thielen, J.; Pappenberger, F. Ensemble hydro-meteorological simulation for flash flood early detection in southern Switzerland. J. Hydrol. 2012, 424–425, 143–153. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.I.; McMahon, T.A. Update world map of the Köppen-Geiger climate classification. Hidrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Rao, V.B.; Franchito, S.H.; Santo, C.M.E.; Gan, M.A. An update on the rainfall characteristics of Brazil: Seasonal variations and trends in 1979–2011. Int. J. Climatol. 2016, 36, 291–302. [Google Scholar] [CrossRef]
- VIDA. Plano Diretor de Recursos Hídricos da Bacia Hidrográfica do rio Sapucaí—Resumo Executivo. Belo Horizonte, Brazil, 2010. Available online: http://www.igam.mg.gov.br/images/stories/planos_diretores_BH/sapucai.pdf (accessed on 6 April 2017).
- Pinheiro, V.M. Avaliação Técnica e Histórica das Enchentes em Itajubá. Master’s Thesis, University of Itajubá, Itajubá, Brazil, 2005. (In Portuguese). [Google Scholar]
- Reis, J.B.C.; Pons, N.A.D.; Lopes, E.S.S. Monitoramento e alerta de inundações no município de Itajubá (MG) por regressão polinomial. Geociências 2016, 35, 134–148. (In Portuguese) [Google Scholar]
- HidroWeb: Sistema de Informações Hidrológicas. Available online: www.snirh.gov.br/hidroweb/ (accessed on 6 April 2017).
- TRMM Data Downloads. Available online: https://pmm.nasa.gov/data-access/downloads/trmm (accessed on 6 April 2017).
- Vicent, G.; Davenport, J.C.; Scofield, R.A. The role of orographic and parallax corrections on real time high resolution satellite rainfall rate distribution. Int. J. Remote Sens. 2002, 23, 221–230. [Google Scholar] [CrossRef]
- Vila, D.; Lima, A. Satellite rainfall estimation over South America: The hydroestimator technique. In Proceedings of the 14th International Conference on Clouds and Precipitation, Bologna, Italy, 19–23 July 2004; pp. 8–23. [Google Scholar]
- DSA: Satellite Division and Environmental Systems. Available online: http://satelite.cptec.inpe.br/atendimento/formulario.jsp?i=en (accessed on 6 April 2017).
- Salas, J.D. Analysis and modeling of hydrologic time series. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1993; pp. 1–72. [Google Scholar]
- United Nations Educational, Scientific and Cultural Organization (UNESCO). Methodological Guide for Developing the Water Balance of South America; UNESCO/ROSTLAC: Montevideo, Uruguay, 1982. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://www.R-project.org/ (accessed on 6 April 2017).
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. R Package Version 2.6-7. 2017. Available online: https://CRAN.R-project.org/package=raster (accessed on 6 April 2017).
- Alfieri, L.; Burek, P.; Dutra, E.; Krzeminski, D.; Thielen, J.; Pappenberger, F. GloFAS—Global ensemble streamflow forecasting and flood early warning. Hydrol. Earth Syst. Sci. 2013, 17, 1161–1175. [Google Scholar] [CrossRef] [Green Version]
- Thiemig, V.; Bisselink, B.; Pappenberger, F.; Thielen, J. A pan-African medium-range ensemble flood forecast system. Hydrol. Earth Syst. Sci. 2015, 19, 1–21. [Google Scholar] [CrossRef]
- Peirce, C.S. The numerical measure of the success of predictions. Science 1884, 4, 453–454. [Google Scholar] [CrossRef] [PubMed]
- Ouatiki, H.; Boudhar, A.; Tramblay, Y.; Jarlan, L.; Benabdelouhab, T.; Hanich, L.; Meslouhi, M.R.E.; Chehbouni, A. Evaluation of TRMM 3B42 v7 rainfall product over the Oum Er Rbia watershed in Morocco. Climate 2017, 5, 1. [Google Scholar] [CrossRef]
- Collischonn, B.; Allasia, D.; Collischonn, W.; Tucci, C.E.M. Desempenho do satélite TRMM na estimativa de precipitação sobre a bacia do Paraguai superior. Rev. Bras. Cartogr. 2007, 59, 93–99. [Google Scholar]
- Nóbrega, R.S.; Souza, E.P.; Galvíncio, J.D. Análise da estimativa de precipitação do TRMM em uma sub-bacia da Amazônia Ocidental. Rev. Geogr. 2008, 25, 6–20. (In Portuguese) [Google Scholar]
- Soares, A.S.D.; Paz, A.R.; Piccilli, D.G.A. Avaliação das estimativas de chuva do satélite TRMM no Estado da Paraíba. RBRH 2016, 21, 288–299. (In Portuguese) [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Nearing, M.A.; Moran, M.S.; Goodrich, D.C.; Wendland, E.; Gupta, H.V. Trends in water balance components across the Brazilian Cerrado. Water Resour. Res. 2014, 50, 7100–7114. [Google Scholar] [CrossRef]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; Levizzani, V.; De Roo, A. Validation of satellite-based precipitation products over sparsely-gauged African river basins. J. Hydrometeorol. 2012, 13, 1760–1783. [Google Scholar] [CrossRef]
Station/Provider | Elevation (m) | Latitude (°) | Longitude (°) |
---|---|---|---|
2245018/ANA | 1585 | −45.567 | −22.717 |
2245087/ANA | 1479 | −45.215 | −22.407 |
2245070/ANA | 853 | −45.622 | −22.471 |
2245010/ANA | 1516 | −45.481 | −22.689 |
2245083/ANA | 854 | −45.447 | −22.376 |
Borges/Unifei | 925 | −45.460 | −22.572 |
Água Limpa/Unifei | 858 | −45.368 | −22.469 |
Delfim Moreira/Unifei | 1203 | −45.286 | −22.510 |
Cantagalo/Unifei | 856 | −45.392 | −22.477 |
Santa Rosa/Unifei | 850 | −45.424 | −22.446 |
Santana/Unifei | 864 | −45.382 | −22.507 |
Observed | |||
---|---|---|---|
Yes | No | ||
Estimated | Yes | Hits (H) | False alarms (FA) |
No | Misses (M) | Correct negatives (CN) |
Station | r | Bias | MAE | RMSE | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TRMM | Hydroe | TRMM | Hydroe | TRMM | Hydroe | TRMM | % | Hydroe | % | |
2254010 | 0.47 | 0.33 | 0.35 | −1.18 | 5.86 | 5.05 | 9.42 | 224.30 | 9.36 | 222.88 |
2245018 | 0.53 | 0.33 | 0.83 | −0.57 | 5.68 | 4.90 | 9.03 | 247.77 | 9.82 | 269.36 |
2245070 | 0.64 | 0.42 | 0.74 | −0.28 | 5.73 | 5.12 | 8.04 | 224.32 | 9.49 | 264.77 |
2245083 | 0.23 | 0.19 | 1.07 | 0.07 | 5.83 | 5.24 | 12.06 | 363.90 | 11.71 | 353.42 |
2245087 | 0.51 | 0.37 | 0.46 | −1.07 | 6.03 | 5.17 | 9.15 | 223.81 | 9.30 | 227.66 |
Água Limpa | 0.54 | 0.35 | 1.08 | 0.45 | 5.53 | 5.27 | 8.86 | 267.54 | 10.75 | 324.71 |
Borges | 0.57 | 0.43 | 0.44 | −0.83 | 6.15 | 5.48 | 9.12 | 221.79 | 9.88 | 240.22 |
Cantagalo | 0.56 | 0.39 | 0.82 | −0.06 | 5.69 | 5.24 | 8.68 | 243.42 | 9.87 | 276.68 |
Delfim Moreira | 0.55 | 0.37 | 1.26 | 0.12 | 5.52 | 4.94 | 8.68 | 263.58 | 9.77 | 296.63 |
Santana | 0.55 | 0.37 | 1.36 | 0.37 | 5.51 | 5.04 | 8.64 | 268.52 | 9.95 | 309.46 |
Santa Rosa | 0.61 | 0.40 | 0.88 | −0.03 | 5.67 | 5.19 | 8.13 | 231.77 | 9.76 | 278.18 |
Mean value | 0.53 | 0.36 | 0.84 | −0.27 | 5.75 | 5.15 | 9.07 | 252.79 | 9.97 | 278.54 |
p = 0 mm day−1 | Rain Gauge | Heavy Rainfall | Rain Gauge | ||||
---|---|---|---|---|---|---|---|
Yes | No | Yes | No | ||||
3B42 | Yes | 693 | 341 | 3B42 | Yes | 153 | 161 |
No | 101 | 1056 | No | 67 | 1810 | ||
Hydroe | Yes | 729 | 620 | Hydroe | Yes | 94 | 116 |
No | 65 | 777 | No | 126 | 1855 | ||
Satellite | POD | POFD | PSS | Satellite | POD | POFD | PSS |
3B42 | 0.87 | 0.24 | 0.63 | 3B42 | 0.70 | 0.08 | 0.61 |
Hydroe | 0.92 | 0.44 | 0.47 | Hydroe | 0.43 | 0.06 | 0.37 |
Season | r | Bias | MAE | RMSE | |||
---|---|---|---|---|---|---|---|
mm month−1 | % | mm month−1 | % | mm month−1 | % | ||
DJF | 0.83 | 52.77 | 25.27 | 90.09 | 43.14 | 81.43 | 39 |
MAM | 0.87 | 33.37 | 38.11 | 52.45 | 60 | 53.96 | 61.6 |
JJA | 0.87 | 1.89 | 4.76 | 26.76 | 67.55 | 18.95 | 47.83 |
SON | 0.75 | 15.97 | 14.6 | 52.91 | 48.42 | 46.35 | 42.41 |
Season | r | Bias | MAE | RMSE | |||
---|---|---|---|---|---|---|---|
mm month−1 | % | mm month−1 | % | mm month−1 | % | ||
DJF | 0.75 | −11.05 | −5.29 | 79.85 | 38.23 | 67.63 | 32.38 |
MAM | 0.77 | −17.46 | −19.9 | 36.72 | 41.93 | 37.19 | 42.47 |
JJA | 0.72 | 3.51 | 8.8 | 26.65 | 67.26 | 27.63 | 69.74 |
SON | 0.63 | −10.93 | −10 | 45.43 | 41.6 | 49.75 | 45.53 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dos Reis, J.B.C.; Rennó, C.D.; Lopes, E.S.S. Validation of Satellite Rainfall Products over a Mountainous Watershed in a Humid Subtropical Climate Region of Brazil. Remote Sens. 2017, 9, 1240. https://doi.org/10.3390/rs9121240
Dos Reis JBC, Rennó CD, Lopes ESS. Validation of Satellite Rainfall Products over a Mountainous Watershed in a Humid Subtropical Climate Region of Brazil. Remote Sensing. 2017; 9(12):1240. https://doi.org/10.3390/rs9121240
Chicago/Turabian StyleDos Reis, João Bosco Coura, Camilo Daleles Rennó, and Eymar Silva Sampaio Lopes. 2017. "Validation of Satellite Rainfall Products over a Mountainous Watershed in a Humid Subtropical Climate Region of Brazil" Remote Sensing 9, no. 12: 1240. https://doi.org/10.3390/rs9121240
APA StyleDos Reis, J. B. C., Rennó, C. D., & Lopes, E. S. S. (2017). Validation of Satellite Rainfall Products over a Mountainous Watershed in a Humid Subtropical Climate Region of Brazil. Remote Sensing, 9(12), 1240. https://doi.org/10.3390/rs9121240