The Role of Climate and Land Use in the Changes in Surface Albedo Prior to Snow Melt and the Timing of Melt Season of Seasonal Snow in Northern Land Areas of 40°N–80°N during 1982–2015
Abstract
:1. Introduction
2. Data
3. Methods
4. Results
4.1. Albedo Before and After the Melt Season
4.2. Melt Season Timing
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hall, A. The role of surface albedo feedback in climate. J. Clim. 2004, 17, 1550–1568. [Google Scholar] [CrossRef]
- Smith, N.; Saatchi, S.; Randerson, J. Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002. J. Geophys. Res. 2004, 109, D12101. [Google Scholar] [CrossRef]
- Déry, S.; Brown, R. Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys. Res. Lett. 2007, 34, L22504. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Averyt, K.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. Climate Change 2007: The Physical Science Basis; Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Volume 4. [Google Scholar]
- Brown, R.D.; Robinson, D.A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 2011, 5, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Flanner, M.; Shell, K.; Barlage, M.; Perovich, D.; Tschudi, M. Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nat. Geosci. 2011, 4, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Derksen, C.; Brown, R. Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Foster, J.L.; Cohen, J.; Robinson, D.A.; Estilow, T.W. A look at the date of snowmelt and correlation with the Arctic Oscillation. Ann. Glaciol. 2013, 54, 196–204. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Atlaskina, K.; Berninger, F.; Leeuw, G. Satellite observations of changes in snow-covered land surface albedo during spring in the Northern Hemisphere. Cryosphere 2015, 9, 1879–1893. [Google Scholar] [CrossRef]
- Manninen, T.; Stenberg, P. Simulation of the effect of snow covered forest floor on the total forest albedo. Agric. For. Meteorol. 2009, 149, 303–319. [Google Scholar] [CrossRef]
- Fassnacht, S.; Cherry, M.; Venable, N.; Saavedra, F. Snow and albedo climate change impacts across the United States Northern Great Plains. Cryosphere 2016, 10, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Ma, M.; Wu, X.; Yang, H. Snow Cover and Vegetation-Induced Decrease in Global Albedo from 2002 to 2016. J. Geophys. Res. Atmos. 2018, 123, 124–138. [Google Scholar] [CrossRef]
- Markus, T.; Stroeve, J.C.; Miller, J. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J. Geophys. Res. 2009, 114, C12024. [Google Scholar] [CrossRef]
- Wang, L.; Derksen, C.; Brown, R.; Markus, T. Recent changes in pan-Arctic melt onset from satellite passive microwave measurements. Geophys. Res. Lett. 2013, 40, 1–7. [Google Scholar] [CrossRef]
- Chen, X.; Liang, S.; Cao, Y.; Cao, T.; Wang, D. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Malnes, E.; Karlsen, R.S.; Johansen, B.; Bjerke, J.W.; Tømmervik, H. Snow season variability in a boreal-Arctic transition area monitored by MODIS data. Environ. Res. Lett. 2016, 11, 125005. [Google Scholar] [CrossRef] [Green Version]
- Rautiainen, K.; Parkkinen, T.; Lemmetyinen, J.; Schwank, M.; Wiesmann, A.; Ikonen, J.; Derksend, C.; Davydove, S.; Davydovae, A.; Boike, J.; et al. SMOS prototype algorithm for detecting autumn soil freezing. Remote Sens. Environ. 2016, 180, 346–360. [Google Scholar] [CrossRef]
- Bhatt, U.; Walker, D.A.; Rauynolds, M.K.; Bienek, P.A.; Epstein, H.E.; Comiso, J.C.; Pinzon, J.E.; Tucker, C.J.; Steele, M.; Ermold, W.; et al. Changing seasonality of panarctic tundra vegetation in relationship to climatic variable. Environ. Res. Lett. 2017, 12, 055003. [Google Scholar] [CrossRef]
- Essery, R. Large-scale simulations of snow albedo masking by forests. Geophys. Res. Lett. 2013, 40. [Google Scholar] [CrossRef]
- Thackeray, C.W.; Fletcher, C.G.; Derksen, C. Quantifying the skill of CMIP5 models in simulating seasonal albedo and snow cover evolution. J. Geophys. Res. Atmos. 2015, 120, 5831–5849. [Google Scholar] [CrossRef] [Green Version]
- Abe, M.; Takata, K.; Kawamiya, M.; Watanabe, S. Vegetation masking effect on future warming and snow albedo feedback in a boreal forest region of northern Eurasia according to MIROC-ESM. J. Geophys. Res. Atmos. 2017, 122. [Google Scholar] [CrossRef]
- Warren, S. Impurities in snow: Effects on albedo and snowmelt (review). Ann. Glaciol. 1984, 5, 177–179. [Google Scholar] [CrossRef]
- Domine, F.; Salvatori, R.; Legagneux, L.; Salzano, R.; Fily, M.; Casacchia, R. Correlation between the specific surface area and the short wave infrared (SWIR) reflectance of snow. Cold Reg. Sci. Technol. 2006, 46, 60–68. [Google Scholar] [CrossRef]
- Ménégoz, M.; Krinner, G.; Balkanski, Y.; Cozic, A.; Boucher, O.; Ciais, P. Boreal and temperate snow cover variations induced by black carbon emissions in the middle of the 21st century. Cryosphere 2013, 7, 537–554. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Myneni, R.; Chapin, F., III; Callaghan, T.; Pinzon, J.; Tucker, C.; Zhu, Z.; Bi, J.; Ciais, P.; Tømmervik, H.; et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Chang. 2013, 3, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Wiscombe, W.J.; Warren, S.G. A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci. 1980, 37, 2712–2733. [Google Scholar] [CrossRef]
- Shi, J.; Dozier, J. Estimation of Snow Water Equivalence Using SIR-C/X-SAR, Part II: Inferring Snow Depth and Particle Size. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2475–2488. [Google Scholar]
- Warren, S.; Brandt, R.; Hinton, P. Effect of surface roughness on bidirectional reflectance of Antarctic snow. J. Geophys. Res. 1998, 103, 25789–25807. [Google Scholar] [CrossRef] [Green Version]
- Nagler, T.; Rott, H. Retrieval of wet snow by means of multitemporal SAR data. Trans. Geosci. Remote Sens. 2000, 38, 754–765. [Google Scholar] [CrossRef]
- Robinson, D.A.; Kukla, G. Albedo of a Dissipating Snow Cover. J. Clim. Appl. Meteorol. 1984, 23, 1626–1634. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.A.; Kukla, G. Maximum Surface Albedo of Seasonally Snow-Covered Lands in the Northern Hemisphere. J. Clim. Appl. Meteorol. 1985, 24, 402–411. [Google Scholar] [CrossRef] [Green Version]
- Kuittinen, R. Determination of areal snow-water equivalent values using satellite imagery and aircraft gamma-ray spectrometry. In Hydrologic Applications of Space Techology: Proceedings of an International Workshop on Hydrologic Applications of Space Technology, Held in Cocoa Beach, FL, USA, 19–23 August 1985; IAHS Press: Oxfordshire, UK; Institute of Hydrology: Wallingford, UK, 1986; Volume 160, pp. 181–189. [Google Scholar]
- Rinne, J.; Aurela, M.; Manninen, T. A Simple Method to determine the timing of snow melt by remote sensing with application to the CO2 balances of northern mire and heath ecosystems. Remote Sens. 1986, 1, 1097–1107. [Google Scholar] [CrossRef]
- Solantie, R.; Drebs, A.; Hellsten, E.; Saurio, P. Lumipeitteen tuo-, lähtö-ja Kestoajoista Suomessatalvina 1960/1961–1992/1993; Finnish Meteorological Institute, English Summary; Meteorological publications: Helsinki, Finland, 1996; Volume 34, 159p. [Google Scholar]
- Barlage, M.; Zeng, X.; Wei, H.; Mitchell, K.E. A global 0.05° maximum albedo dataset of snow-covered land based on MODIS observations. Geophys. Res. Lett. 2005, 32, L17405. [Google Scholar] [CrossRef]
- Anttila, K.; Jääskeläinen, E.; Riihelä, A.; Manninen, T.; Andersson, K.; Hollman, R. Algorithm Theoretical Basis Document: CM SAF Cloud, Albedo, Radiation Data Record Ed. 2—Surface Albedo. 2016. Available online: https://icdc.cen.uni-hamburg.de/fileadmin/user_upload/icdc_Dokumente/EUMETSAT-CMSAF/SAF_CM_FMI_ATBD_GAC_SAL_2_3.pdf (accessed on 14 August 2018).
- Karlsson, K.-G.; Anttila, K.; Trentmann, J.; Stengel, M.; Meirink, J.F.; Devastale, A.; Hanschmann, T.; Kothe, S.; Jääskeläinen, E.; Sedlar, J.; et al. CLARA-A2: The second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data. Atmos. Chem. Phys. 2017, 17, 5809–5828. [Google Scholar] [CrossRef]
- Riihelä, A.; Manninen, T.; Laine, V.; Andersson, K.; Kaspar, F. CLARA-SAL: A global 28 yr timeseries of Earth’s black-sky surface albedo. Atmos. Chem. Phys. 2013, 13, 3743–3762. [Google Scholar] [CrossRef]
- Jääskeläinen, E.; Manninen, T.; Tamminen, J.; Laine, M. The Aerosol Index and Land Cover Class Based Atmospheric Correction Aerosol Optical Depth Time Series 1982–2014 for the SMAC Algorithm. Remote Sens. 2017, 9, 1095. [Google Scholar] [CrossRef]
- Peltoniemi, J.I.; Suomalainen, J.; Hakala, T.; Puttonen, E.; Näränen, J.; Kaasalainen, S.; Torppa, J.; Hirschmugl, M. Reflectance of various snow types: Measurements, modelling and potential for snow melt monitoring. In Light Scattering Reviews 5: Single Light Scattering and Radiative Transfer; Springer Praxis Books: Berlin/Heidelberg, Germany, 2010; Chapter 9; pp. 393–450. [Google Scholar] [CrossRef]
- Eastwood, S. Sea Ice Product User’s Manual OSI-401-a, OSI-402-a, OSI-403-a, Version 3.11. 2014. Available online: http://osisaf.met.no/docs/osisaf_ss2_pum_ice-conc-edge-type_v3p11.pdf (accessed on 14 August 2018).
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Anttila, K.; Jääskeläinen, E.; Riihelä, A.; Manninen, T.; Andersson, K.; Hollman, R. Validation Report: CM SAF Cloud, Albedo, Radiation Data Record Ed. 2—Surface Albedo. 2016. Available online: https://icdc.cen.uni-hamburg.de/fileadmin/user_upload/icdc_Dokumente/EUMETSAT-CMSAF/SAF_CM_FMI_ATBD_GAC_SAL_2_3.pdf (accessed on 14 August 2018).
- Riihelä, A.; Laine, V.; Manninen, T.; Palo, T.; Vihma, T. Validation of the Climate-SAF surface broadband albedo product: Comparisons with in situ observations over Greenland and the ice-covered Arctic Ocean. Remote Sens. Environ. 2010, 114, 2779–2790. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Alonso-Balmaseda, M.; Balsamo, G.; Bauer, P.; et al. The ERA–Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Arino, O.; Ramos, J.; Kalogirou, V.; Defourny, P.; Achard, F. GlobCover 2009. In Proceedings of the Living Planet Symposium, Bergen, Norway, 28 June–2 July 2010. [Google Scholar]
- Böttcher, K.; Aurela, M.; Kervinen, M.; Markkanen, T.; Mattila, O.P.; Kolari, P.; Metsämäki, S.; Aalto, T.; Arslan, A.N.; Pulliainen, J. MODIS tile-series-derived indicators for the beginning of the growing season in boreal coniferous forest—A comparison with the CO2 flux measurements and phenological observations in Finland. Remote Sens. Environ. 2014, 140, 625–638. [Google Scholar] [CrossRef]
- Sturm, M.; Douglas, T.; Racine, C.; Liston, G. Changing snow and shrub conditions affect albedo with global implications. J. Geophys. Res.-Biogeosci. 2005, 110, G01004. [Google Scholar] [CrossRef]
- Bonan, G.B.; Pollard, D.; Thompson, S.L. Effects of boreal forest vegetation on global climate. Nature 1992, 359, 716. [Google Scholar] [CrossRef]
- Rigina, O. Environmental impact assessment of the mining and concentration activities in the Kola Peninsula, Russia by multidate remote sensing. Environ. Monit. Assess. 2002, 75, 11–31. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Buitenwerf, R.; Rose, L.; Higgins, S. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Chang. 2015, 5, 364–368. [Google Scholar] [CrossRef]
- Bullard, J.; Baddock, M.; Bradwell, T.; Crusius, J.; Darlington, E.; Gaiero, D.; Gassó, S.; Gisladottir, G.; Hodgkins, R.; McCulloch, R.; et al. High-latitude dust in Earth system. Rev. Geophys. 2016, 54, 447–485. [Google Scholar] [CrossRef]
- Helbig, M.; Wischnewski, K.; Kljun, N.; Chasmer, L.E.; Quinton, W.L.; Detto, M.; Sonnentag, O. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss. Glob. Chang. Biol. 2016, 22, 4048–4066. [Google Scholar] [CrossRef] [PubMed]
- Myers-Smith, I.H.; Elmerdorf, S.; Becl, P.; Wilmking, M.; Hallinger, M.; Blok, D.; Tape, K.D.; Rayback, S.A.; Macias-Fauria, M.; Forbes, B.C.; et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Chang. 2015, 5, 887–891. [Google Scholar] [CrossRef]
LUC Class | Label | Number of Occurrence |
---|---|---|
11 | Post-flooding or irrigated croplands (or aquatic) | 420 |
14 | Rainfed croplands | 5137 |
20 | Mosaic cropland (50–70%)/vegetation (grassland/shrubland/forest) (20–50%) | 5771 |
30 | Mosaic vegetation (grassland/shrubland/forest) (50–70%)/cropland (20–50%) | 2996 |
50 | Closed (>40%) broadleaved deciduous forest (>5 m) | 7775 |
70 | Closed (>40%) needleleaved evergreen forest (>5 m) | 2472 |
90 | Open (15–40%) needleleaved deciduous or evergreen forest (>5 m) | 31415 |
100 | Closed to open (>15%) mixed broadleaved and needleleaved forest (>5 m) | 3605 |
110 | Mosaic forest or shrubland (50–70%)/grassland (20–50%) | 2299 |
120 | Mosaic grassland (50–70%)/forest or shrubland (20–50%) | 1883 |
130 | Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) shrubland (<5 m) | 1371 |
140 | Closed to open (>15%) herbaceous vegetation (grassland, savannas or lichens/mosses) | 3869 |
150 | Sparse (<15%) vegetation | 28741 |
180 | Closed to open (>15%) grassland or woody vegetation on regularly flooded or waterlogged soil–Fresh, brackish or saline water | 1639 |
190 | Artificial surfaces and associated areas (urban areas >50%) | 103 |
200 | Bare areas | 7523 |
210 | Water bodies | 115239 |
220 | Permanent snow and ice | 11022 |
Pre-Melt Albedo | Post-Melt Albedo | Start Day of Melt (Days Per Year) | End Day of Melt (Days Per Year) | Melt Season Length (Days Per Year) | Mean Air Temp. (K/Year) | No. Days Above 0 °C (Days Per Year) | No. Days Above > −4 °C (Days Per Year) | No. Days Above > −10 °C (Days Per Year) | Accum. Precip (mm/Year) | Wind Speed (m/s Per Year) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Cent. Sib. Plain 7809 | −0.25 (4100) | −0.08 (1765) | −0.61 (2486) | −0.50 (2243) | 0.46 (317) | −0.12 (370) | −0.06 (359) | −0.11 (373) | −0.11 (399) | −0.28 (169) | 0.01 (112) |
RCM 7191 | 0.15 (2505) | −0.09 (1872) | −0.95 (1030) | 0.71 (577) | 1.51 (925) | −0.25 (720) | −0.09 (573) | −0.14 (667) | −0.18 (604) | −0.58 (477) | 0.01 (378) |
Labrador 2640 | −0.09 (1111) | −0.06 (603) | 0.28 (95) | −0.59 (289) | −0.94 (228) | 0.21 (380) | 0.03 (113) | 0.16 (193) | 0.19 (499) | 0.33 (84) | 0.00 (142) |
Rocky Mnts 2840 | −0.05 (449) | −0.07 (626) | −1.18 (170) | 1.17 (303) | 2.13 (280) | −0.21 (254) | −0.12 (197) | −0.19 (243) | −0.18 (197) | −0.12 (127) | 0.01 (104) |
Alaska 4866 | −0.15 (1121) | −0.08 (1024) | −0.43 (156) | −0.22 (204) | 0.37 (267) | −0.08 (176) | −0.05 (214) | −0.16 (268) | −0.07 (161) | −0.09 (130) | 0.01 (101) |
Europ. Arctic 3526 | −0.29 (1233) | −0.01 (227) | −0.79 (510) | −0.39 (102) | 0.88 (303) | −0.12 (276) | −0.06 (217) | −0.06 (376) | −0.09 (252) | −0.09 (102) | 0.02 (121) |
Canad. archip. 1796 | −0.11 (222) | −0.26 (432) | −0.61 (79) | 0.03 (79) | 0.81 (95) | 0.01 (32) | −0.06 (20) | −0.1 (30) | −0.04 (29) | 0.33 (27) | −0.03 (83) |
The Alps 299 | −0.17 (22) | −0.12 (34) | −1.48 (28) | 1.53 (19) | 2.69 (30) | −0.18 (5) | −0.27 (5) | −0.18 (4) | −0.04 (3) | −0.00 (8) | −0.02 (7) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anttila, K.; Manninen, T.; Jääskeläinen, E.; Riihelä, A.; Lahtinen, P. The Role of Climate and Land Use in the Changes in Surface Albedo Prior to Snow Melt and the Timing of Melt Season of Seasonal Snow in Northern Land Areas of 40°N–80°N during 1982–2015. Remote Sens. 2018, 10, 1619. https://doi.org/10.3390/rs10101619
Anttila K, Manninen T, Jääskeläinen E, Riihelä A, Lahtinen P. The Role of Climate and Land Use in the Changes in Surface Albedo Prior to Snow Melt and the Timing of Melt Season of Seasonal Snow in Northern Land Areas of 40°N–80°N during 1982–2015. Remote Sensing. 2018; 10(10):1619. https://doi.org/10.3390/rs10101619
Chicago/Turabian StyleAnttila, Kati, Terhikki Manninen, Emmihenna Jääskeläinen, Aku Riihelä, and Panu Lahtinen. 2018. "The Role of Climate and Land Use in the Changes in Surface Albedo Prior to Snow Melt and the Timing of Melt Season of Seasonal Snow in Northern Land Areas of 40°N–80°N during 1982–2015" Remote Sensing 10, no. 10: 1619. https://doi.org/10.3390/rs10101619
APA StyleAnttila, K., Manninen, T., Jääskeläinen, E., Riihelä, A., & Lahtinen, P. (2018). The Role of Climate and Land Use in the Changes in Surface Albedo Prior to Snow Melt and the Timing of Melt Season of Seasonal Snow in Northern Land Areas of 40°N–80°N during 1982–2015. Remote Sensing, 10(10), 1619. https://doi.org/10.3390/rs10101619