Exploration in Mapping Kernel-Based Home Range Models from Remote Sensing Imagery with Conditional Adversarial Networks
Abstract
:1. Introduction
- We propose a general-purpose framework for mapping the kernel-based home range models from time-series remote sensing imagery. We innovatively use the adversarial network as a supervised model to learn the mapping between image-based data and the target (Figure 1). Our method enables scientists to carry out their home range analysis even if the GPS data is insufficient for long-term and large-scale research. To our knowledge, this is the first exploration in mapping home range models using an image-based strategy.
- We illustrate our method in a real-world scenario for mapping the home ranges of Bar-headed Geese in Qinghai Lake area. We build a specific dataset for training the mapping model and elaborate each stage in the experiment. Our experience will assist researchers in extending their research scale in various wildlife analyses.
- We qualitatively and quantitatively compare our method against several baseline models. We analyze the strengths and drawbacks of selected baselines and further discuss why our method is suitable for this specific task.
2. Related Work
2.1. Kernel-Based Home Range Models
2.2. Habitat Mapping
2.3. Image-to-Image Translation
3. Materials and Methods
3.1. Data and Target
3.2. Mapping Model
Formulation
3.3. Implementation
Network Architectures
4. Experiment
4.1. Study Area and Field Knowledge
4.2. Source Data
4.2.1. GPS Data
4.2.2. Remote Sensing Imagery
4.3. Preprocessing
4.4. Training Details
4.5. Training Stability
4.6. Results
4.6.1. Baselines
- kNN: k-Nearest Neighbors algorithm [57] is a non-parametric method used for both classification and regression. In the regression mode, the output value is the average of the values of its k nearest neighbors.
- Decision Tree: Decision Tree [58] is a non-parametric supervised learning method used for both classification and regression. Classification and Regression Tree (CART) has been used in mapping the extent and quality of wildlife habitat in many studies [31,59]. We first test the decision tree as a regression model to map our target using a pixel-based scheme.
- Random Forest: Random Forest regressor [60] fits a number of classification and decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. It has also been used as an advanced model instead of the decision tree in several studies [61,62]. Here, we examined it as a pixel-based baseline to investigate whether the improvement at the model level can overcome the limitation of the pixel-based scheme.
- CNN + loss: CNN with loss is the most straightforward way to predict a continuous target using deep learning. The loss is the general choice in image processing tasks [63,64]. Here, we used the same encoder–decoder as our model to avoid the impact of network architecture. This baseline is actually training the proposed generator network in loss.
- Conditional VAE: Deep generative models have achieved good performance in the image-to-image translation. Besides CGAN, another well-established generation model, CVAE [65], has also shown promise in similar studies [65,66]. Different from GAN, VAE makes strong assumptions concerning the posterior and prior distribution of hidden variable and target data. It also tries to approximate these distributions with neural networks.
4.6.2. Metrics
- Regression Metrics: To quantitatively evaluate the prediction of the continuous values on home range maps, we employ Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and to measure the mapping accuracy from the perspective of regression.
- SSIM Loss: Considering that our target is also a structured image like nature images, we used the Structural Similarity Index (SSIM) [67] to measure the structural similarity between the synthesized home range maps and the real target. SSIM is an established metric to measure quality and similarity between images [68,69]. The SSIM for pixel is:
4.6.3. Qualitative Evaluation
4.6.4. Quantitative Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burt, W.H. Territoriality and home range concepts as applied to mammals. J. Mammal. 1943, 24, 346–352. [Google Scholar] [CrossRef]
- Katajisto, J.; Moilanen, A. Kernel-based home range method for data with irregular sampling intervals. Ecol. Model. 2006, 194, 405–413. [Google Scholar] [CrossRef]
- Kenward, R.E. A Manual for Wildlife Radio Tagging; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- White, G.C.; Garrott, R.A. Analysis of Wildlife Radio-Tracking Data; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Marzluff, J.M.; Millspaugh, J.J.; Hurvitz, P.; Handcock, M.S. Relating resources to a probabilistic measure of space use: Forest fragments and Steller’s jays. Ecology 2004, 85, 1411–1427. [Google Scholar] [CrossRef]
- Seaman, D.E.; Powell, R.A. An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology 1996, 77, 2075–2085. [Google Scholar] [CrossRef]
- Worton, B.J. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 1989, 70, 164–168. [Google Scholar] [CrossRef]
- Getz, W.M.; Fortmann-Roe, S.; Cross, P.C.; Lyons, A.J.; Ryan, S.J.; Wilmers, C.C. LoCoH: Nonparameteric kernel methods for constructing home ranges and utilization distributions. PLoS ONE 2007, 2, e207. [Google Scholar] [CrossRef] [PubMed]
- Marzluff, J.M.; Knick, S.T.; Millspaugh, J.J. High-tech behavioral ecology: Modeling The distribution of animal activities to better understand wildlife space use and resource selection. In Radio Tracking and Animal Populations; Elsevier: Amsterdam, The Netherlands, 2001; pp. 309–326. [Google Scholar]
- Takekawa, J.Y.; Newman, S.H.; Xiao, X.; Prosser, D.J.; Spragens, K.A.; Palm, E.C.; Yan, B.; Li, T.; Lei, F.; Zhao, D.; et al. Migration of waterfowl in the East Asian flyway and spatial relationship to HPAI H5N1 outbreaks. Avian Dis. 2010, 54, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.; Cresswell, W.; Forde, P.; Trewhella, W.; Woollard, T.; Wray, S. Home-range analysis using radio-tracking data—A review of problems and techniques particularly as applied to the study of mammals. Mamm. Rev. 1990, 20, 97–123. [Google Scholar] [CrossRef]
- Powell, R.A.; Mitchell, M.S. What is a home range? J. Mammal. 2012, 93, 948–958. [Google Scholar] [CrossRef] [Green Version]
- Andréfouët, S. Coral reef habitat mapping using remote sensing: A user vs. producer perspective. Implications for research, management and capacity building. J. Spat. Sci. 2008, 53, 113–129. [Google Scholar] [CrossRef]
- Maleki, S.; Soffianian, A.R.; Koupaei, S.S.; Saatchi, S.; Pourmanafi, S.; Sheikholeslam, F. Habitat mapping as a tool for water birds conservation planning in an arid zone wetland: The case study Hamun wetland. Ecol. Eng. 2016, 95, 594–603. [Google Scholar] [CrossRef]
- Nagendra, H.; Lucas, R.; Honrado, J.P.; Jongman, R.H.; Tarantino, C.; Adamo, M.; Mairota, P. Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol. Indic. 2013, 33, 45–59. [Google Scholar] [CrossRef]
- Van Winkle, W. Comparison of several probabilistic home-range models. J. Wildl. Manag. 1975, 39, 118–123. [Google Scholar] [CrossRef]
- Ford, R.G.; Krumme, D.W. The analysis of space use patterns. J. Theor. Biol. 1979, 76, 125–155. [Google Scholar] [CrossRef]
- Calenge, C. Home Range Estimation in R: The adehabitatHR Package; Office National De La Classe Et De La Faune Sauvage: Auffargis, France, 2011. [Google Scholar]
- Epanechnikov, V.A. Non-parametric estimation of a multivariate probability density. Theory Probab. Appl. 1969, 14, 153–158. [Google Scholar] [CrossRef]
- Bullard, F. Estimating the Home Range of an Animal: A Brownian Bridge Approach. Ph.D. Thesis, Johns Hopkins University, Baltimore, MD, USA, 1999. [Google Scholar]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Barry, S.; Elith, J. Error and uncertainty in habitat models. J. Appl. Ecol. 2006, 43, 413–423. [Google Scholar] [CrossRef] [Green Version]
- Varela, R.D.; Rego, P.R.; Iglesias, S.C.; Sobrino, C.M. Automatic habitat classification methods based on satellite images: A practical assessment in the NW Iberia coastal mountains. Environ. Monit. Assess. 2008, 144, 229–250. [Google Scholar] [CrossRef] [PubMed]
- Haest, B.; Thoonen, G.; Borre, J.V.; Spanhove, T.; Delalieux, S.; Bertels, L.; Kooistra, L.; Mücher, C.; Scheunders, P. An object-based approach to quantity and quality assessment of heathland habitats in the framework of Natura 2000 using hyperspectral airborne AHS images. In Proceedings of the GEOBIA 2010 Conference, Ghent, Belgium, 29 June–2 July 2010. [Google Scholar]
- Lucas, R.; Medcalf, K.; Brown, A.; Bunting, P.; Breyer, J.; Clewley, D.; Keyworth, S.; Blackmore, P. Updating the Phase 1 habitat map of Wales, UK, using satellite sensor data. ISPRS J. Photogramm. Remote Sens. 2011, 66, 81–102. [Google Scholar] [CrossRef]
- Beutel, T.; Beeton, R.; Baxter, G. Building better wildlife-habitat models. Ecography 1999, 22, 219. [Google Scholar] [CrossRef]
- Drew, C.A.; Wiersma, Y.F.; Huettmann, F. Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Hyde, P.; Dubayah, R.; Walker, W.; Blair, J.B.; Hofton, M.; Hunsaker, C. Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy. Remote Sens. Environ. 2006, 102, 63–73. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.; Song, W.; Lee, M.J. Habitat Potential Mapping of Marten (Martes flavigula) and Leopard Cat (Prionailurus bengalensis) in South Korea Using Artificial Neural Network Machine Learning. Appl. Sci. 2017, 7, 912. [Google Scholar] [CrossRef]
- Chegoonian, A.; Mokhtarzade, M.; Valadan Zoej, M. A comprehensive evaluation of classification algorithms for coral reef habitat mapping: Challenges related to quantity, quality, and impurity of training samples. Int. J. Remote Sens. 2017, 38, 4224–4243. [Google Scholar] [CrossRef]
- Pastick, N.J.; Jorgenson, M.T.; Wylie, B.K.; Nield, S.J.; Johnson, K.D.; Finley, A.O. Distribution of near-surface permafrost in Alaska: Estimates of present and future conditions. Remote Sens. Environ. 2015, 168, 301–315. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv, 2017; arXiv:1703.10593. [Google Scholar]
- Sangkloy, P.; Lu, J.; Fang, C.; Yu, F.; Hays, J. Scribbler: Controlling deep image synthesis with sketch and color. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; Volume 2. [Google Scholar]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. Image style transfer using convolutional neural networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2414–2423. [Google Scholar]
- Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context encoders: Feature learning by inpainting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2536–2544. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Sohn, K.; Lee, H.; Yan, X. Learning structured output representation using deep conditional generative models. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 3483–3491. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv, 2014; arXiv:1411.1784. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. arXiv, 2016; arXiv:1611.07004. [Google Scholar]
- Zhu, J.Y.; Zhang, R.; Pathak, D.; Darrell, T.; Efros, A.A.; Wang, O.; Shechtman, E. Toward multimodal image-to-image translation. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 465–476. [Google Scholar]
- Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Smolley, S.P. Least squares generative adversarial networks. arXiv, 2016; arXiv:1611.04076. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin, Germany, 2015; pp. 234–241. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv, 2016; arXiv:1603.04467. [Google Scholar]
- Chen, H.; Smith, G.; Zhang, S.; Qin, K.; Wang, J.; Li, K.; Webster, R.; Peiris, J.; Guan, Y. Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature 2005, 436, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xiao, H.; Lei, F.; Zhu, Q.; Qin, K.; Zhang, X.W.; Zhang, X.l.; Zhao, D.; Wang, G.; Feng, Y.; et al. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science 2005, 309, 1206. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, G.; Qian, F.; Hou, Y.; Dai, M.; Jiang, H.; Lu, J.; Xiao, W. Population, distribution and home range of wintering bar-headed oose alon Yaluzan, bu River. Tibet. Aeta Eeol. Sin. 2010, 30, 4173–4179. [Google Scholar]
- Butler, D. Doubts hang over source of bird flu spread. Nature 2006, 439, 772. [Google Scholar] [CrossRef] [PubMed]
- Justice, C.O.; Vermote, E.; Townshend, J.R.; Defries, R.; Roy, D.P.; Hall, D.K.; Salomonson, V.V.; Privette, J.L.; Riggs, G.; Strahler, A.; et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, Z.; Liu, D.; Li, L.; Ren, C.; Tang, X.; Jia, M.; Liu, C. Assessment of habitat suitability for waterbirds in the West Songnen Plain, China, using remote sensing and GIS. Ecol. Eng. 2013, 55, 94–100. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Yu, L.; Si, Y. Multi-scale habitat selection by two declining East Asian waterfowl species at their core spring stopover area. Ecol. Indic. 2018, 87, 127–135. [Google Scholar] [CrossRef]
- Cappelle, J.; Girard, O.; Fofana, B.; Gaidet, N.; Gilbert, M. Ecological modeling of the spatial distribution of wild waterbirds to identify the main areas where avian influenza viruses are circulating in the Inner Niger Delta, Mali. EcoHealth 2010, 7, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Tieleman, T.; Hinton, G. RMSprop Gradient Optimization. Available online: http://www.cs.toronto.edu/tijmen/csc321/slides/lecture_slides_lec6.pdf (accessed on 30 October 2018).
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv, 2014; arXiv:1412.6980. [Google Scholar]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar]
- Rokach, L.; Maimon, O.Z. Data Mining with Decision Trees: Theory and Applications; World Scientific: Singapore, 2008; Volume 69. [Google Scholar]
- Kobler, A.; Adamic, M. Identifying brown bear habitat by a combined GIS and machine learning method. Ecol. Model. 2000, 135, 291–300. [Google Scholar] [CrossRef]
- Ho, T.K. Random decision forests. In Proceedings of the Third International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [Google Scholar]
- Garzon, M.B.; Blazek, R.; Neteler, M.; De Dios, R.S.; Ollero, H.S.; Furlanello, C. Predicting habitat suitability with machine learning models: The potential area of Pinus sylvestris L. in the Iberian Peninsula. Ecol. Model. 2006, 197, 383–393. [Google Scholar] [CrossRef]
- Vincenzi, S.; Zucchetta, M.; Franzoi, P.; Pellizzato, M.; Pranovi, F.; De Leo, G.A.; Torricelli, P. Application of a Random Forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy. Ecol. Model. 2011, 222, 1471–1478. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 184–199. [Google Scholar]
- Wang, Y.Q. A multilayer neural network for image demosaicking. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 30 October 2014; pp. 1852–1856. [Google Scholar]
- Walker, J.; Doersch, C.; Gupta, A.; Hebert, M. An uncertain future: Forecasting from static images using variational autoencoders. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 835–851. [Google Scholar]
- Xue, T.; Wu, J.; Bouman, K.; Freeman, B. Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 91–99. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Ridgeway, K.; Snell, J.; Roads, B.; Zemel, R.S.; Mozer, M.C. Learning to generate images with perceptual similarity metrics. arXiv, 2015; arXiv:1511.06409. [Google Scholar]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 2017, 3, 47–57. [Google Scholar] [CrossRef]
- Huang, L.; Yang, Y.; Deng, Y.; Yu, Y. Densebox: Unifying landmark localization with end to end object detection. arXiv, 2015; arXiv:1509.04874. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99. [Google Scholar]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 645–657. [Google Scholar] [CrossRef]
- Calenge, C.; Darmon, G.; Basille, M.; Loison, A.; Jullien, J.M. The factorial decomposition of the Mahalanobis distances in habitat selection studies. Ecology 2008, 89, 555–566. [Google Scholar] [CrossRef] [PubMed]
Bird | Sex | Capture | GPS Records | |
---|---|---|---|---|
2007 | 2008 | |||
BH07_67582 | F | 03/25/07 | 924 | 80 |
BH07_67690 | F | 03/27/07 | 311 | 23 |
BH07_67695 | M | 03/29/07 | 333 | 571 |
BH07_67698 | M | 03/30/07 | 642 | 11 |
BH07_74898 | M | 03/31/07 | 864 | 690 |
Sum | 3074 | 1375 |
Factors | Formula | Involved Bands | Reference |
---|---|---|---|
NDVI | (NIR-RED)/(NIR + RED) | Band 1,2 | [52] 2013 |
EVI | 2.55 (NIR-RED)/(NIR + 6RED-7.5BLUE + 1) | Band 1, 2, 3 | [53] 2018 |
NDWI | (GREEN-NIR)(GREEN + NIR) | Band 2, 4 | [54] 2010 |
Land Cover | MODIS land cover classification algorithm (MLCCA) | Band 1-7 | [10] 2010 |
Method | Metrics | |||
---|---|---|---|---|
RMSE | MAE | |||
Our model | 17.363 | 13.028 | 0.865 | 0.368 |
kNN Regressor | 52.82 | 41.29 | 0.167 | 0.998 |
Decision and Regression Tree | 28.357 | 18.867 | 0.702 | 0.974 |
Random Forest Regressor | 22.442 | 16.435 | 0.771 | 0.934 |
CNN + loss | 18.605 | 19.481 | 0.821 | 0.495 |
Conditional VAE | 20.311 | 17.871 | 0.788 | 0.511 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, R.; Wu, G.; Yan, C.; Zhang, R.; Luo, Z.; Yan, B. Exploration in Mapping Kernel-Based Home Range Models from Remote Sensing Imagery with Conditional Adversarial Networks. Remote Sens. 2018, 10, 1722. https://doi.org/10.3390/rs10111722
Zheng R, Wu G, Yan C, Zhang R, Luo Z, Yan B. Exploration in Mapping Kernel-Based Home Range Models from Remote Sensing Imagery with Conditional Adversarial Networks. Remote Sensing. 2018; 10(11):1722. https://doi.org/10.3390/rs10111722
Chicago/Turabian StyleZheng, Ruobing, Guoqiang Wu, Chao Yan, Renyu Zhang, Ze Luo, and Baoping Yan. 2018. "Exploration in Mapping Kernel-Based Home Range Models from Remote Sensing Imagery with Conditional Adversarial Networks" Remote Sensing 10, no. 11: 1722. https://doi.org/10.3390/rs10111722
APA StyleZheng, R., Wu, G., Yan, C., Zhang, R., Luo, Z., & Yan, B. (2018). Exploration in Mapping Kernel-Based Home Range Models from Remote Sensing Imagery with Conditional Adversarial Networks. Remote Sensing, 10(11), 1722. https://doi.org/10.3390/rs10111722