Determining the Mechanisms that Influence the Surface Temperature of Urban Forest Canopies by Combining Remote Sensing Methods, Ground Observations, and Spatial Statistical Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Study Area
2.3. Creation of a Multisource Spatial Database
2.4. Inversion of Surface Temperature of Urban Forest Canopies
Accuracy Assessment
2.5. Spatial Statistical Analysis
2.5.1. Determination of Optimal Threshold Distance
2.5.2. Statistical Analysis Based on Global Moran’s I and Local Getis–Ord Gi*
2.5.3. GeogDetector Modeling
3. Results
3.1. The Surface Temperatures of Urban Forest Canopies, Stand Structure, and Anthropogenic Activity
3.2. Mechanisms that Influence Surface Temperatures of Urban Forest Canopies
4. Discussion
4.1. Mechanisms that Impact the Surface Temperature of Urban Forest Canopies
4.2. Recommendations for Further Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Schnell, S.; Kleinn, C.; Ståhl, G. Monitoring trees outside forests: A review. Environ. Monit. Assess. 2015, 187, 600. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Zhan, W.; Chen, Y.; Wang, M.; Wang, J. Time series decomposition of remotely sensed land surface temperature and investigation of trends and seasonal variations in surface urban heat islands. J. Geophys. Res. Atmos. 2016, 121, 2638–2657. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.D.; Hu, H.F.; Pan, Y.D.; Birdsey, R.A.; Fang, J.Y. Increasing biomass carbon stocks in trees outside forests in China over the last three decades. Biogeosciences 2014, 11, 4115–4122. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; James, P.; Hutyra, L.R.; He, H.S. Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landsc. Urban Plan. 2014, 128, 35–47. [Google Scholar] [CrossRef]
- Plieninger, T. Monitoring directions and rates of change in trees outside forests through multitemporal analysis of map sequences. Appl. Geogr. 2012, 32, 566–576. [Google Scholar] [CrossRef] [Green Version]
- Beckschäfer, P.; Schnell, S.; Kleinn, C. Monitoring and assessment of trees outside forests (TOF). In Agroforestry: Anecdotal to Modern Science; Dagar, J.C., Tewari, V.P., Eds.; Springer: Singapore, 2017; pp. 137–161. [Google Scholar]
- Cristóbal, J.; Jiménez-Muñoz, J.; Prakash, A.; Mattar, C.; Skoković, D.; Sobrino, J. An improved single-channel method to retrieve land surface temperature from the landsat-8 thermal band. Remote Sens. 2018, 10, 431. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, Y.; Liu, Z. A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Can. J. For. Res. 2015, 45. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a uav-lidar system with application to forest inventory. Remote Sens. 2012, 4, 1519–1543. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Poisot, T.; Stouffer, D.B.; Gravel, D. Beyond species: Why ecological interaction networks vary through space and time. Oikos 2015, 124, 243–251. [Google Scholar] [CrossRef]
- Lischka, S.A.; Teel, T.L.; Johnson, H.E.; Reed, S.E.; Breck, S.; Don Carlos, A.; Crooks, K.R. A conceptual model for the integration of social and ecological information to understand human-wildlife interactions. Biol. Conserv. 2018, 225, 80–87. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Luo, Z.; Chan, P.W. The urban cool island phenomenon in a high-rise high-density city and its mechanisms. Int. J. Climatol. 2017, 37, 890–904. [Google Scholar] [CrossRef]
- Ren, Y.; Deng, L.Y.; Zuo, S.D.; Luo, Y.J.; Shao, G.F.; Wei, X.H.; Hua, L.Z.; Yang, Y.S. Geographical modeling of spatial interaction between human activity and forest connectivity in an urban landscape of southeast China. Landsc. Ecol. 2014, 29, 1741–1758. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Heino, J.; Melo, A.S.; Bini, L.M.; Altermatt, F.; Al-Shami, S.A.; Angeler, D.G.; Bonada, N.; Brand, C.; Callisto, M.; Cottenie, K.; et al. A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecol. Evol. 2015, 5, 1235–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Liu, X.; Dong, R. Landsenses ecology and ecological planning towards sustainable development. Int. J. Sustain. Dev. World Ecol. 2016, 293–297. [Google Scholar] [CrossRef]
- Lin, W.; Yu, T.; Chang, X.; Wu, W.; Zhang, Y. Calculating cooling extents of green parks using remote sensing: Method and test. Landsc. Urban Plan. 2015, 134, 66–75. [Google Scholar] [CrossRef]
- Zhou, W.; Qian, Y.; Li, X.; Li, W.; Han, L. Relationships between land cover and the surface urban heat island: Seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landsc. Ecol. 2014, 29, 153–167. [Google Scholar] [CrossRef]
- Connors, J.P.; Galletti, C.S.; Chow, W.T.L. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2013, 28, 271–283. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J.G. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 2010, 25, 17–33. [Google Scholar] [CrossRef]
- Spronken-Smith, R.A.; Oke, T.R. The thermal regime of urban parks in two cities with different summer climates. Int. J. Remote Sens. 1998, 19, 2085–2104. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landsc. Urban Plan. 2014, 123, 87–95. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Wang, C.; Cavan, G.; James, P. A satellite image-based analysis of factors contributing to the green-space cool island intensity on a city scale. Urban For. Urban Green. 2014, 13, 846–853. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.S.; Weng, Q.H. Use of impervious surface in urban land-use classification. Remote Sens. Environ. 2006, 102, 146–160. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from landsat tm data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Zhao, J.Z.; Dai, D.B.; Lin, T.; Tang, L.N. Rapid urbanisation, ecological effects and sustainable city construction in Xiamen. Int. J. Sustain. Dev. World Ecol. 2010, 17, 271–272. [Google Scholar] [CrossRef]
- Brabyn, L.; Zawar-Reza, P.; Stichbury, G.; Cary, C.; Storey, B.; Laughlin, D.C.; Katurji, M. Accuracy assessment of land surface temperature retrievals from landsat 7 ETM + in the Dry Valleys of Antarctica using iButton temperature loggers and weather station data. Environ. Monit. Assess. 2014, 186, 2619–2628. [Google Scholar] [CrossRef] [PubMed]
- Ord, J.L.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Barrell, J.; Grant, J. Detecting hot and cold spots in a seagrass landscape using local indicators of spatial association. Landsc. Ecol. 2013, 28, 2005–2018. [Google Scholar] [CrossRef]
- Mahboubi, P.; Parkes, M.; Stephen, C.; Chan, H.M. Using expert informed gis to locate important marine social-ecological hotspots. J. Environ. Manag. 2015, 160, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Deng, L.Y.; Zuo, S.D.; Song, X.D.; Liao, Y.L.; Xu, C.D.; Chen, Q.; Hua, L.Z.; Li, Z.W. Quantifying the influences of various ecological factors on land surface temperature of urban forests. Environ. Pollut. 2016, 216, 519–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models & Applications; Taylor & Francis: Abingdon, UK, 1981. [Google Scholar]
- Esri. How Spatial Autocorrelation (Global Moran’s I) Works. Available online: http://resources.arcgis.com/en/help/main/10.2/#/na/005p0000000t000000/ (accessed on 26 August 2018).
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.F.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Fujian Forestry Department Forest Resource Management Center. Technical Regulations for Investigation and Design of Forest Resources in Fujian. 2006. Available online: http://www.fjlgy.com/SView347.aspx (accessed on 26 August 2018).
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearbook Cartogr. 1967, 7, 186–190. [Google Scholar]
- Wolf, D.; Lundholm, J.T. Water uptake in green roof microcosms: Effects of plant species and water availability. Ecol. Eng. 2008, 33, 179–186. [Google Scholar] [CrossRef]
- Ballinas, M.; Barradas, V.L. Transpiration and stomatal conductance as potential mechanisms to mitigate the heat load in Mexico city. Urban For. Urban Green. 2016, 20, 152–159. [Google Scholar] [CrossRef]
- Bonan, G.B.; Williams, M.; Fisher, R.A.; Oleson, K.W. Modeling stomatal conductance in the earth system: Linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum. Geosci. Model Dev. 2014, 7, 2193–2222. [Google Scholar] [CrossRef]
- Henneron, L.; Chauvat, M.; Archaux, F.; Akpa-Vinceslas, M.; Bureau, F.; Dumas, Y.; Mignot, L.; Ningre, F.; Perret, S.; Richter, C.; et al. Plant interactions as biotic drivers of plasticity in leaf litter traits and decomposability of Quercus petraea. Ecol. Monogr. 2017, 87, 321–340. [Google Scholar] [CrossRef] [Green Version]
- Drake, P.L.; Froend, R.H.; Franks, P.J. Smaller, faster stomata: Scaling of stomatal size, rate of response, and stomatal conductance. J. Exp. Bot. 2013, 64, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Damour, G.; Simonneau, T.; Cochard, H.; Urban, L. An overview of models of stomatal conductance at the leaf level. Plant Cell Environ. 2010, 33, 1419–1438. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.D.; Phillips, N.G.; Logan, B.A.; Hricko, C.R.; Tissue, D.T. Leaf photosynthesis, respiration and stomatal conductance in six Eucalyptus species native to mesic and xeric environments growing in a common garden. Tree Physiol. 2011, 31, 997–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, T.N.; Mott, K.A. Modelling stomatal conductance in response to environmental factors. Plant Cell Environ. 2013, 36, 1691–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzoni, S.; Vico, G.; Katul, G.; Fay, P.A.; Polley, W.; Palmroth, S.; Porporato, A. Optimizing stomatal conductance for maximum carbon gain under water stress: A meta-analysis across plant functional types and climates. Funct. Ecol. 2011, 25, 456–467. [Google Scholar] [CrossRef]
- Gratani, L. Plant phenotypic plasticity in response to environmental factors. Adv. Bot. 2014, 2014, 208747. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The cooling efficiency of urban landscape strategies in a hot dry climate. Landsc. Urban Plan. 2009, 92, 179–186. [Google Scholar] [CrossRef]
- Egerer, M.H.; Lin, B.B.; Threlfall, C.G.; Kendal, D. Temperature variability influences urban garden plant richness and gardener water use behavior, but not planting decisions. Sci. Total Environ. 2019, 646, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Zamani, Z.; Heidari, S.; Hanachi, P. Reviewing the thermal and microclimatic function of courtyards. Renew. Sustain. Energy Rev. 2018, 93, 580–595. [Google Scholar] [CrossRef]
- Lee, I.; Voogt, J.; Gillespie, T. Analysis and comparison of shading strategies to increase human thermal comfort in urban areas. Atmosphere 2018, 9, 91. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Buyantuev, A.; Stefanov, W.L.; Declet-Barreto, J.; Ruddell, B.L.; Myint, S.W.; Kaplan, S.; Li, X. Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landsc. Ecol. 2016, 31, 745–760. [Google Scholar] [CrossRef]
- Luo, W.; Jasiewicz, J.; Stepinski, T.; Wang, J.; Xu, C.; Cang, X. Spatial association between dissection density and environmental factors over the entire conterminous united states. Geophys. Res. Lett. 2016, 43, 692–700. [Google Scholar] [CrossRef]
- Tsukaya, H. Leaf shape: Genetic controls and environmental factors. Int. J. Dev. Biol. 2005, 49, 547–555. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Bertness, M.D. Extreme stresses, niches, and positive species interactions along stress gradients. Ecology 2014, 95, 1437–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heffernan, J.B.; Soranno, P.A.; Angilletta, M.J.; Buckley, L.B.; Gruner, D.S.; Keitt, T.H.; Kellner, J.R.; Kominoski, J.S.; Rocha, A.V.; Xiao, J.; et al. Macrosystems ecology: Understanding ecological patterns and processes at continental scales. Front. Ecol. Environ. 2014, 12, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Duffy, J.E.; Reynolds, P.L.; Boström, C.; Coyer, J.A.; Cusson, M.; Donadi, S.; Douglass, J.G.; Eklöf, J.S.; Engelen, A.H.; Eriksson, B.K.; et al. Biodiversity mediates top–down control in eelgrass ecosystems: A global comparative-experimental approach. Ecol. Lett. 2015, 18, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Xian, Y.; Wang, M.; Chen, W. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere 2015, 139, 604–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Zheng, Y.; Wu, B.; Wu, X.; Liu, J.; Zheng, C. Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture. Environ. Model. Softw. 2015, 63, 170–184. [Google Scholar] [CrossRef]
- Iwamura, T.; Lambin, E.F.; Silvius, K.M.; Luzar, J.B.; Fragoso, J.M.V. Agent-based modeling of hunting and subsistence agriculture on indigenous lands: Understanding interactions between social and ecological systems. Environ. Model. Softw. 2014, 58, 109–127. [Google Scholar] [CrossRef]
- Iizuka, K.; Watanabe, K.; Kato, T.; Putri, N.; Silsigia, S.; Kameoka, T.; Kozan, O. Visualizing the spatiotemporal trends of thermal characteristics in a peatland plantation forest in Indonesia: Pilot test using Unmanned Aerial Systems (UASs). Remote Sens. 2018, 10, 1345. [Google Scholar] [CrossRef]
Threshold Radius (m) | Mean Neighbors (SD) | Minimum (Maximum) Neighbors | Hot & Cold Spots Cover % of Total Area | |||
---|---|---|---|---|---|---|
2004 | 2014 | 2004 | 2014 | 2004 | 2014 | |
250 | 11.79 (6.19) | 11.52 (6.50) | 1 (29) | 1 (41) | 21.41 | 11.06 |
500 | 21.49 (11.22) | 26.03 (13.84) | 1 (109) | 1 (70) | 45.83 | 33.51 |
750 | 32.31 (17.48) | 38.97 (20.33) | 2 (139) | 1 (114) | 58.21 | 42.51 |
1000 | 44.68 (23.90) | 61.05 (29.62) | 3 (179) | 2 (156) | 64.96 | 50.23 |
1250 | 59.33 (31.07) | 79.96 (37.10) | 3 (219) | 3 (205) | 69.39 | 55.01 |
1500 | 75.99 (38.69) | 106.28 (47.09) | 3 (261) | 5 (231) | 73.61 | 58.5 |
1750 | 94.50 (46.45) | 132.44 (55.23) | 3 (302) | 5 (284) | 77.16 | 61.91 |
2000 | 114.21 (54.56) | 163.49 (66.97) | 3 (355) | 10 (332) | 80.58 | 62.01 |
2250 | 138.45 (60.45) | 197.08 (77.97) | 8 (285) | 12 (403) | 82.94 | 62.55 |
2500 | 157.14 (70.66) | 231.47 (89.36) | 14 (441) | 16 (473) | 84.69 | 62.97 |
2750 | 181.08 (79.60) | 267.98 (95.28) | 8 (493) | 18 (543) | 85.34 | 63.25 |
3000 | 206.54 (88.46) | 309.02 (113.87) | 10 (548) | 26 (586) | 84.75 | 62.89 |
3250 | 233.41 (97.31) | 349.45 (119.19) | 12 (592) | 27 (640) | 84.73 | 63.07 |
3500 | 261.04 (104.94) | 395.31 (139.24) | 12 (626) | 37 (690) | 85.48 | 65.37 |
Year | 2004 | 2014 |
---|---|---|
Moran’s Index | 0.476 ** | 0.178 ** |
Z-score | 129.788 | 74.675 |
Pattern | Clustered | Clustered |
ALL | HS | CS | NS | ||||||
---|---|---|---|---|---|---|---|---|---|
2004 | 2014 | 2004 | 2014 | 2004 | 2014 | 2004 | 2014 | ||
Forest Characteristics | PA | 0.242 | 0.024 | 0.056 | 0.013 | 0.120 | 0.011 | 0.014 | 0.020 |
DS | 0.124 | 0.028 | 0.056 | 0.019 | 0.093 | 0.032 | 0.085 | 0.013 | |
CD | 0.013 | 0.003 | 0.025 | 0.006 | 0.018 | 0.007 | 0.039 | 0.005 | |
SA | 0.004 | 0.005 | 0.011 | 0.004 | 0.007 | 0.016 | 0.001 | 0.004 | |
Soil | ShI | 0.123 | 0.02 | 0.050 | 0.006 | 0.092 | 0.005 | 0.018 | 0.015 |
SiI | 0.079 | 0.004 | 0.001 | 0.001 | 0.039 | 0.004 | 0.006 | 0.003 | |
SD | 0.045 | 0.007 | 0.011 | 0.001 | 0.045 | 0.000 | 0.005 | 0.007 | |
HD | 0.001 | 0.001 | 0.000 | 0.000 | 0.007 | 0.015 | 0.004 | 0.002 | |
Topography | ELE | 0.139 | 0.012 | 0.006 | 0.005 | 0.099 | 0.003 | 0.005 | 0.006 |
SDe | 0.059 | 0.005 | 0.012 | 0.005 | 0.026 | 0.005 | 0.001 | 0.002 | |
SPo | 0.048 | 0.003 | 0.023 | 0.006 | 0.027 | 0.016 | 0.010 | 0.004 | |
SDi | 0.018 | 0.001 | 0.031 | 0.007 | 0.013 | 0.015 | 0.021 | 0.006 | |
Anthropogenic activity | PD | 0.07 | 0.015 | 0.011 | 0.006 | 0.053 | 0.014 | 0.007 | 0.009 |
ISP100 | 0.023 | 0.027 | 0.013 | 0.012 | 0.108 | 0.045 | 0.021 | 0.030 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, S.; Dai, S.; Song, X.; Xu, C.; Liao, Y.; Chang, W.; Chen, Q.; Li, Y.; Tang, J.; Man, W.; et al. Determining the Mechanisms that Influence the Surface Temperature of Urban Forest Canopies by Combining Remote Sensing Methods, Ground Observations, and Spatial Statistical Models. Remote Sens. 2018, 10, 1814. https://doi.org/10.3390/rs10111814
Zuo S, Dai S, Song X, Xu C, Liao Y, Chang W, Chen Q, Li Y, Tang J, Man W, et al. Determining the Mechanisms that Influence the Surface Temperature of Urban Forest Canopies by Combining Remote Sensing Methods, Ground Observations, and Spatial Statistical Models. Remote Sensing. 2018; 10(11):1814. https://doi.org/10.3390/rs10111814
Chicago/Turabian StyleZuo, Shudi, Shaoqing Dai, Xiaodong Song, Chengdong Xu, Yilan Liao, Weiyin Chang, Qi Chen, Yaying Li, Jianfeng Tang, Wang Man, and et al. 2018. "Determining the Mechanisms that Influence the Surface Temperature of Urban Forest Canopies by Combining Remote Sensing Methods, Ground Observations, and Spatial Statistical Models" Remote Sensing 10, no. 11: 1814. https://doi.org/10.3390/rs10111814
APA StyleZuo, S., Dai, S., Song, X., Xu, C., Liao, Y., Chang, W., Chen, Q., Li, Y., Tang, J., Man, W., & Ren, Y. (2018). Determining the Mechanisms that Influence the Surface Temperature of Urban Forest Canopies by Combining Remote Sensing Methods, Ground Observations, and Spatial Statistical Models. Remote Sensing, 10(11), 1814. https://doi.org/10.3390/rs10111814