Using TanDEM-X Pursuit Monostatic Observations with a Large Perpendicular Baseline to Extract Glacial Topography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. TerraSAR-X and TanDEM-X SAR
2.2.2. GIMP DEM and Global TanDEM-X DEM
2.2.3. CryoSat-2 Radar Altimeter and IceBridge ATM Laser Altimeter
2.3. Methods
Data Processing
3. Results
3.1. DEM Construction
3.2. Validation Using Existing DEMs
3.3. Validation with Altimetry Observations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Joughin, I.; Das, S.B.; King, M.A.; Smith, B.E.; Howat, I.M.; Moon, T. Seasonal speedup along the western flank of the greenland ice sheet. Science 2008, 320, 781–783. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Gourmelen, N.; Shepherd, A.; Kim, S.; Vaughan, D.; Wingham, D. Sustained retreat of the pine island glacier. Geophys. Res. Lett. 2013, 40, 2137–2142. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Mouginot, J.; Morlighem, M.; Seroussi, H.; Scheuchl, B. Widespread, rapid grounding line retreat of pine island, thwaites, smith, and kohler glaciers, west antarctica, from 1992 to 2011. Geophys. Res. Lett. 2014, 41, 3502–3509. [Google Scholar] [CrossRef]
- Tedesco, M.; Box, J.; Cappelen, J.; Fettweis, X.; Mote, T.; van de Wal, R.; Smeets, C.; Wahr, J. Greenland Ice Sheet. Available online: www.arctic.noaa.gov/reportcard (accessed on 10 September 2018).
- Joughin, I.; Smith, B.E.; Howat, I.M.; Floricioiu, D.; Alley, R.B.; Truffer, M.; Fahnestock, M. Seasonal to decadal scale variations in the surface velocity of jakobshavn isbrae, greenland: Observation and model-based analysis. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef]
- Joughin, I.; Smith, B.E.; Howat, I.M.; Scambos, T.; Moon, T. Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol. 2010, 56, 415–430. [Google Scholar] [CrossRef]
- Meehl, G.A.; Washington, W.M.; Collins, W.D.; Arblaster, J.M.; Hu, A.; Buja, L.E.; Strand, W.G.; Teng, H. How much more global warming and sea level rise? Science 2005, 307, 1769–1772. [Google Scholar] [CrossRef] [PubMed]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A. Sea level projections to ad2500 with a new generation of climate change scenarios. Glob. Planet. Chang. 2012, 80, 14–20. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Perrette, M.; Vermeer, M. Testing the robustness of semi-empirical sea level projections. Clim. Dyn. 2012, 39, 861–875. [Google Scholar] [CrossRef]
- Kääb, A.; Huggel, C.; Fischer, L.; Guex, S.; Paul, F.; Roer, I.; Salzmann, N.; Schlaefli, S.; Schmutz, K.; Schneider, D. Remote sensing of glacier-and permafrost-related hazards in high mountains: An overview. Nat. Hazards Earth Syst. Sci. 2005, 5, 527–554. [Google Scholar] [CrossRef]
- Berthier, E.; Vincent, C.; Magnússon, E.; Gunnlaugsson, Á.; Pitte, P.; Le Meur, E.; Masiokas, M.; Ruiz, L.; Pálsson, F.; Belart, J. Glacier topography and elevation changes derived from pléiades sub-meter stereo images. Cryosphere 2014, 8, 2275–2291. [Google Scholar] [CrossRef]
- Zemp, M.; Thibert, E.; Huss, M.; Stumm, D.; Denby, C.R.; Nuth, C.; Nussbaumer, S.; Moholdt, G.; Mercer, A.; Mayer, C. Reanalysing glacier mass balance measurement series. Cryosphere 2013, 7, 1227–1245. [Google Scholar] [CrossRef] [Green Version]
- Massom, R.; Lubin, D. Polar Remote Sensing; Springer: Berlin, Germany, 2006; Volume 2. [Google Scholar]
- Rignot, E.; Velicogna, I.; van den Broeke, M.R.; Monaghan, A.; Lenaerts, J.T. Acceleration of the contribution of the greenland and antarctic ice sheets to sea level rise. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Van den Broeke, M.; Box, J.; Fettweis, X.; Hanna, E.; Noël, B.; Tedesco, M.; van As, D.; van de Berg, W.J.; van Kampenhout, L. Greenland ice sheet surface mass loss: Recent developments in observation and modeling. Curr. Clim. Chang. Rep. 2017, 3, 345–356. [Google Scholar] [CrossRef]
- Howat, I.M.; Joughin, I.; Scambos, T.A. Rapid changes in ice discharge from greenland outlet glaciers. Science 2007, 315, 1559–1561. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.C.; Hubbard, A.L.; Box, J.E.; Todd, J.; Christoffersen, P.; Carr, J.R.; Holt, T.O.; Snooke, N.A. Uav photogrammetry and structure from motion to assess calving dynamics at store glacier, a large outlet draining the greenland ice sheet. Cryosphere 2015, 9, 1–11. [Google Scholar] [CrossRef]
- Khan, S.A.; Aschwanden, A.; Bjørk, A.A.; Wahr, J.; Kjeldsen, K.K.; Kjaer, K.H. Greenland ice sheet mass balance: A review. Rep. Progr. Phys. 2015, 78, 046801. [Google Scholar] [CrossRef] [PubMed]
- Dehecq, A.; Millan, R.; Berthier, E.; Gourmelen, N.; Trouvé, E.; Vionnet, V. Elevation changes inferred from tandem-x data over the mont-blanc area: Impact of the x-band interferometric bias. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 3870–3882. [Google Scholar] [CrossRef]
- Rott, H.; Floricioiu, D.; Wuite, J.; Scheiblauer, S.; Nagler, T.; Kern, M. Mass changes of outlet glaciers along the nordensjköld coast, northern antarctic peninsula, based on tandem-x satellite measurements. Geophys. Res. Lett. 2014, 41, 8123–8129. [Google Scholar] [CrossRef]
- Shepherd, A.; Wingham, D. Recent sea-level contributions of the antarctic and greenland ice sheets. Science 2007, 315, 1529–1532. [Google Scholar] [CrossRef] [PubMed]
- Elkhrachy, I. Vertical accuracy assessment for srtm and aster digital elevation models: A case study of najran city, saudi arabia. Ain Shams Eng. J. 2017, in press. [Google Scholar] [CrossRef]
- Zink, M.; Bachmann, M.; Brautigam, B.; Fritz, T.; Hajnsek, I.; Moreira, A.; Wessel, B.; Krieger, G. Tandem-x: The new global dem takes shape. IEEE Geosci. Remote Sens. Mag. 2014, 2, 8–23. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, D.-J. Combined usage of tandem-x and cryosat-2 for generating a high resolution digital elevation model of fast moving ice stream and its application in grounding line estimation. Remote Sens. 2017, 9, 176. [Google Scholar] [CrossRef]
- Arnaud, A.; Adam, N.; Hanssen, R.; Inglada, J.; Duro, J.; Closa, J.; Eineder, M. Asar ers interferometric phase continuity. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; pp. 1133–1135. [Google Scholar]
- Hong, S.-H.; Won, J.-S. Ers-envisat cross-interferometry for coastal dem construction. In Proceedings of the Fringe 2005 Workshop, Frascati, Italy, 28 November–2 December 2005. [Google Scholar]
- Wegmüller, U.; Santoro, M.; Werner, C.; Strozzi, T.; Wiesmann, A. Estimation of ice thickness of tundra lakes using ers-envisat cross-interferometry. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 316–319. [Google Scholar]
- Park, J.-W.; Choi, J.-H.; Lee, Y.-K.; Won, J.-S. Intertidal dem generation using satellite radar interferometry. Korean J. Remote Sens. 2012, 28, 121–128. [Google Scholar] [CrossRef]
- Hajnsek, I.; Busche, T. Tandem-x: Science activities. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 2892–2894. [Google Scholar]
- Lee, S.-K.; Ryu, J.-H. High-accuracy tidal flat digital elevation model construction using tandem-x science phase data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 2713–2724. [Google Scholar] [CrossRef]
- MacDonald, G.J.; Banwell, A.F.; MacAYEAL, D.R. Seasonal evolution of supraglacial lakes on a floating ice tongue, petermann glacier, greenland. Ann. Glaciol. 2018, 59, 1–10. [Google Scholar] [CrossRef]
- Münchow, A.; Padman, L.; Fricker, H.A. Interannual changes of the floating ice shelf of petermann gletscher, north greenland, from 2000 to 2012. J. Glaciol. 2014, 60, 489–499. [Google Scholar] [CrossRef]
- Gourmelen, N. Tandem-x observations over the petermann gletscher glacier northern greenland. In Proceedings of the 4th TanDEM-X Science Team Meeting, Wessling, Germany, 12–14 June 2013. [Google Scholar]
- Nick, F.; Luckman, A.; Vieli, A.; Van der Veen, C.J.; Van As, D.; Van De Wal, R.; Pattyn, F.; Hubbard, A.; Floricioiu, D. The response of petermann glacier, greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming. J. Glaciol. 2012, 58, 229–239. [Google Scholar] [CrossRef]
- Moreira, A.; Krieger, G.; Hajnsek, I.; Hounam, D.; Werner, M.; Riegger, S.; Settelmeyer, E. Tandem-x: A terrasar-x add-on satellite for single-pass sar interferometry. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; pp. 1000–1003. [Google Scholar]
- Hirano, A.; Welch, R.; Lang, H. Mapping from aster stereo image data: Dem validation and accuracy assessment. ISPRS J. Photogramm. Remote Sens. 2003, 57, 356–370. [Google Scholar] [CrossRef]
- Korona, J.; Berthier, E.; Bernard, M.; Rémy, F.; Thouvenot, E. Spirit. Spot 5 stereoscopic survey of polar ice: Reference images and topographies during the fourth international polar year (2007–2009). ISPRS J. Photogramm. Remote Sens. 2009, 64, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Bamber, J.L.; Ekholm, S.; Krabill, W.B. A new, high-resolution digital elevation model of greenland fully validated with airborne laser altimeter data. J. Geophys. Res. Solid Earth 2001, 106, 6733–6745. [Google Scholar] [CrossRef]
- Howat, I.; Negrete, A.; Smith, B. The greenland ice mapping project (gimp) land classification and surface elevation data sets. Cryosphere 2014, 8, 1509–1518. [Google Scholar] [CrossRef]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global tandem-x digital elevation model with gps data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [Google Scholar] [CrossRef]
- Wingham, D.; Francis, C.; Baker, S.; Bouzinac, C.; Brockley, D.; Cullen, R.; de Chateau-Thierry, P.; Laxon, S.; Mallow, U.; Mavrocordatos, C. Cryosat: A mission to determine the fluctuations in earth’s land and marine ice fields. Adv. Space Res. 2006, 37, 841–871. [Google Scholar] [CrossRef]
- Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Kwok, R.; Schweiger, A.; Zhang, J.; Haas, C. Cryosat-2 estimates of arctic sea ice thickness and volume. Geophys. Res. Lett. 2013, 40, 732–737. [Google Scholar] [CrossRef]
- Wang, F.; Bamber, J.L.; Cheng, X. Accuracy and performance of cryosat-2 sarin mode data over antarctica. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1516–1520. [Google Scholar] [CrossRef]
- Scagliola, M.; Fornari, M. Known Biases in Cryosat Level1b Products; European Space Agency: Paris, France, 2013. [Google Scholar]
- Krabill, W.; Abdalati, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Yungel, J. Aircraft laser altimetry measurement of elevation changes of the greenland ice sheet: Technique and accuracy assessment. J. Geodyn. 2002, 34, 357–376. [Google Scholar] [CrossRef]
- Martin, C.F.; Krabill, W.B.; Manizade, S.S.; Russell, R.L.; Sonntag, J.G.; Swift, R.N.; Yungel, J.K. Airborne Topographic Mapper Calibration Procedures and Accuracy Assessment. Available online: ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120008479 (accessed on 11 March 2018).
- Krabill, W.; Thomas, R. Icebridge Atm l2 Icessn Elevation, Slope, and Roughness; NASA Distributed Active Archive Center, National Snow Ice Data Center: Boulder, CO, USA, 2010. [Google Scholar]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Gamma sar and interferometric processing software. In Proceedings of the Ers-Envisat Symposium, Gothenburg, Sweden, 16–20 October 2000. [Google Scholar]
- Buckley, S.; Rossen, P.; Persaud, P. Roi_pac Documentation-Repeat Orbit Interferometry Package; JET Propulsion Lab.: Pasadena, CA, USA, 2000. [Google Scholar]
- Kampes, B.; Usai, S. Doris: The delft object-oriented radar interferometric software. In Proceedings of the 2nd International Symposium on Operationalization of Remote Sensing, Enschede, The Netherlands, 16–20 August 1999. [Google Scholar]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer Science & Business Media: New York, NY, USA, 2001; Volume 2. [Google Scholar]
- Gatelli, F.; Guamieri, A.M.; Parizzi, F.; Pasquali, P.; Prati, C.; Rocca, F. The wavenumber shift in sar interferometry. IEEE Trans. Geosci. Remote Sens. 1994, 32, 855–865. [Google Scholar] [CrossRef]
- Guarnieri, A.M.; Prati, C. Scansar focusing and interferometry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1029–1038. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
Parameter | TerraSAR-X/TanDEM-X |
---|---|
Acquisition date | February 21, 2015 |
Carrier frequency | X-band (9.6 GHz) |
Wavelength | 3.1 cm |
Polarization | HH |
Incidence angle | 35.28/35.33 degrees |
Pulse repetition frequency | 3700 Hz |
ADC sampling rate | 164.8 MHz |
Azimuth pixel spacing | 1.90 m |
Range pixel spacing | 0.91 m |
CryoSat-2 Radar Altimeter | IceBridge ATM Laser Altimeter | ||
---|---|---|---|
Acquisition | January 22, 2015 (D *) | January 24, 2015 (D) | May 5, 2015 12:35:55 |
Date | January 26, 2015 (D) | January 28, 2015 (D) | May 5, 2015 12:45:06 |
January 30, 2015 (D) | February 7, 2015 (A) | May 5, 2015 12:50:02 | |
February 9, 2015 (A) | February 11, 2015 (A) | May 5, 2015 12:56:20 | |
February 13, 2015 (A) | February 15, 2015 (A) | May 5, 2015 13:06:14 | |
February 18, 2015 (D) | February 20, 2015 (D) | May 5, 2015 14:38:29 | |
February 22, 2015 (D) | February 24, 2015 (D) | ||
February 26, 2015 (D) | February 28, 2015 (D) | ||
March 8, 2015 (A) | March 10, 2015 (A) | ||
March 12, 2015 (A) | March 14, 2015 (A) | ||
March 19, 2015 (D) | March 21, 2015 (D) |
Constructed DEM | GIMP DEM | Global TanDEM-X DEM | |
---|---|---|---|
Mean (m)_ | 49.0 | 49.6 | 45.8 |
Std. (m)_ | 21.5 | 34.6 | 35.8 |
Minimum (m) | 5.6 | 19.0 | −35.0 |
Maximum (m) | 1063.0 | 1076.0 | 1065.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.-H.; Wdowinski, S.; Amelung, F.; Kim, H.-C.; Won, J.-S.; Kim, S.-W. Using TanDEM-X Pursuit Monostatic Observations with a Large Perpendicular Baseline to Extract Glacial Topography. Remote Sens. 2018, 10, 1851. https://doi.org/10.3390/rs10111851
Hong S-H, Wdowinski S, Amelung F, Kim H-C, Won J-S, Kim S-W. Using TanDEM-X Pursuit Monostatic Observations with a Large Perpendicular Baseline to Extract Glacial Topography. Remote Sensing. 2018; 10(11):1851. https://doi.org/10.3390/rs10111851
Chicago/Turabian StyleHong, Sang-Hoon, Shimon Wdowinski, Falk Amelung, Hyun-Cheol Kim, Joong-Sun Won, and Sang-Wan Kim. 2018. "Using TanDEM-X Pursuit Monostatic Observations with a Large Perpendicular Baseline to Extract Glacial Topography" Remote Sensing 10, no. 11: 1851. https://doi.org/10.3390/rs10111851
APA StyleHong, S. -H., Wdowinski, S., Amelung, F., Kim, H. -C., Won, J. -S., & Kim, S. -W. (2018). Using TanDEM-X Pursuit Monostatic Observations with a Large Perpendicular Baseline to Extract Glacial Topography. Remote Sensing, 10(11), 1851. https://doi.org/10.3390/rs10111851