Developing Land-Use Regression Models to Estimate PM2.5-Bound Compound Concentrations
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Material
2.2. Experimental Methods
2.3. Geospatial Database
2.4. LUR model Development and Validation
3. Experimental Results
3.1. Descriptive Statistics of PM2.5-Bound Compound Concentrations
3.2. LUR Model Assessment
3.3. Spatiotemporal Variations of PM2.5-Bound Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dockery, D.W.; Pope, C.; Xu, X.; Spengler, J.; Ware, J.; Fay, M.; Ferris, B.; Speizer, F. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Cascio, W.E.; Katwa, L.C.; Linn, W.S.; Stram, D.O.; Zhu, Y.; Cascio, J.L.; Hinds, W.C. Effects of vehicle exhaust in aged adults riding on Los Angeles Freeways. Am. J. Respir. Crit. Care Med. 2009, 179, A1175. [Google Scholar]
- Spurny, K.R. On the physics, chemistry and toxicology of ultrafine anthropogenic atmospheric aerosols (UAAA): New advances. Toxicol. Lett. 1998, 96, 253–261. [Google Scholar] [CrossRef]
- Bell, M.L.; Belanger, K.; Ebisu, K.; Gent, J.F.; Lee, H.J.; Koutrakis, P.; Leaderer, B.P. Prenatal exposure to fine particulate matter and birth weight:variations by particulate constituents and sources. Epidemiology 2010, 21, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Gehring, U.; Beelen, R.; Eeftens, M.; Hoek, G.; de Hoogh, K.; de Jongste, J.C.; Keuken, M.; Koppelman, G.H.; Meliefste, K.; Oldenwening, M.; et al. Particulate Matter Composition and Respiratory Health: The PIAMA Birth Cohort Study. Epidemiology 2015, 26, 300–309. [Google Scholar] [CrossRef]
- Fairley, D. Daily mortality and air pollution in Santa Clara County, California: 1989–1996. Environ. Health Perspect. 1999, 107, 637–641. [Google Scholar] [CrossRef]
- Burnett, R.T.; Brook, J.; Dann, T.; Delocla, C.; Philips, O.; Cakmak, S.; Vincent, R.; Goldberg, M.S.; Krewski, D. Association between particulate- and gasphase components of urban air pollution and daily mortality in eight Canadian cities. Inhal. Toxicol. 2000, 12, S15–39. [Google Scholar] [CrossRef]
- Ostro, B.; Feng, W.Y.; Broadwin, R.; Green, S.; Lipsett, M. The effects of components of fine particulate air pollution on mortality in California: Results from CALFINE. Environ. Health Perspect. 2007, 115, 13–19. [Google Scholar] [CrossRef]
- USEPA. Air Explorer. Available online: http://www.epa.gov/airexplorer (accessed on 13 December 2006).
- Guerschman, J.P.; Paruelo, J.M.; Bela, C.D.; Giallorenzi, M.C.; Pacin, F. Land cover classification in the Argentine Pampas using multi-temporal Landsat TM data. Int. J. Remote Sens. 2003, 24, 3381–3402. [Google Scholar] [CrossRef]
- Pan, W.C.; Wu, C.D.; Chen, M.J.; Huang, Y.T.; Chen, C.J.; Su, H.J.; Yang, H.I. Fine particle pollution, alanine transaminase, and liver cancer: A Taiwanese prospective cohort study (REVEAL–HBV). J. Natl. Cancer Inst. 2016, 108. [Google Scholar] [CrossRef]
- Wu, C.D.; Chen, Y.C.; Pan, W.C.; Zeng, Y.T.; Chen, M.J.; Guo, Y.L.; Lung, S.C. Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial—Temporal variability. Environ. Pollut. 2017, 224, 148–157. [Google Scholar] [CrossRef]
- Wang, R.; Henderson, S.B.; Sbihi, H.; Allen, R.W.; Brauer, M. Temporal stability of land use regression models for traffic-related air pollution. Atmos. Environ. 2013, 64, 312–319. [Google Scholar] [CrossRef]
- Aguilera, I.; Eeftens, M.; Meier, R.; Ducret-Stich, R.E.; Schindler, C.; Ineichen, A.; Phuleria, H.C.; Probst-Hensch, N.; Tsai, M.-Y.; Künzli, N. Land use regression models for crustal and traffic-related PM2.5 constituents in four areas of the SAPALDIA study. Environ. Res. 2015, 140, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Demers, M.N. Fundamentals of Geographic Information Systems; John Wiley Sons, Inc.: New York, NY, USA, 2005. [Google Scholar]
- Wu, Q.; Li, H.Q.; Wang, R.S.; Paulussen, J.; He, H.; Wang, M.; Wang, B.H.; Wang, Z. Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landsc. Urban Plan. 2006, 78, 322–333. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef] [Green Version]
- McDonald, J.D.; Reed, M.D.; Campen, M.J.; Barrett, E.G.; Seagrave, J.; Mauderly, J.L. Health effects of inhaled gasoline Engine emissions. Inhal. Toxicol. 2007, 19, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, J. Hygroscopic particles on leaves: Nutrients or desiccants? Ecol. Monogr. 2010, 80, 369–399. [Google Scholar] [CrossRef]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total. Environ. 2012, 427, 347–354. [Google Scholar] [CrossRef]
- Kerckhoffs, J.; Wang, M.; Meliefste, K.; Malmqvist, E.; Fischer, P.A.H.; Janssen, N.; Beelen, R.; Hoek, G. A national fine spatial scale land-use regression model for ozone. Environ. Res. 2015, 140, 440–448. [Google Scholar] [CrossRef]
- Wu, C.D.; McNeely, E.; Cedeño-Laurent, J.G.; Pan, W.C.; Adamkiewicz, G.; Dominici, F.; Candice Lung, S.C.; Su, H.-J.; Spengler, J.D. Linking Student Performance in Massachusetts Elementary Schools with the “Greenness” of School Surroundings Using Remote Sensing. PLoS ONE 2014, 9, e108548. [Google Scholar] [CrossRef]
- Urman, R.; Gauderman, J.; Fruin, S.; Lurmann, F.; Liu, F.; Hosseini, R.; Franklin, M.; Avol, E.; Penfold, B.; Gilliland, F.; et al. Determinants of the spatial distributions of elemental carbon and particulate matter in eight Southern Californian communities. Atmospheric environment. Atmos. Environ. 2014, 86, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.Y.; Sun, L.; Barrett, O.; Bertazzon, S.; Underwood, F.E.; Johnson, M. Development of land-use regression models for metals associated with airborne particulate matter in a North American city. Atmos. Environ. 2015, 106, 165–177. [Google Scholar] [CrossRef]
- DGB. Close DGB (Directorate General of Budget) National Statistics-Current Index. Available online: http://www.stat.gov.tw/point.asp?index=4 (accessed on 9 August 2018).
- MOTC (Ministry of Transportation and Communications). Vehicle Statistics. Available online: http://www.motc.gov.tw/ch/home.jsp?id=6&parentpath=0 2017 (accessed on 9 August 2018).
- Lung, S.C.C.; Hsiao, P.K.; Wen, T.Y.; Liu, C.H.; Fu, C.B.; Cheng, Y.T. Variability of intra-urban exposure to particulate matter and CO from Asian-type community pollution sources. Atmos. Environ. 2014, 83, 6–13. [Google Scholar] [CrossRef]
- EPA (Environmental Protection Agency). PM2.5 Automatic Monitoring. Available online: http://taqm.epa.gov.tw/pm25/en/PM25A.aspx (accessed on 9 October 2018).
- Kuo, S.C.; Tsai, Y.I.; Sopajaree, K. Emission identification and health risk potential of allergy-causing fragrant substances in PM2.5 from incense burning. Build. Environ. 2015, 87, 23–33. [Google Scholar] [CrossRef]
- Yu, K.P.; Yang, K.R.; Chen, Y.C.; Gong, J.Y.; Chen, Y.P.; Shih, H.C.; Lung, S.-C.C. Indoor air pollution from gas cooking in five Taiwanese families. Build. Environ. 2015, 93, 258–266. [Google Scholar] [CrossRef]
- Liou, R.M.; Huang, S.N.; Lin, C.W. Methane emission from fields with differences in nitrogen fertilizers and rice varieties in Taiwan paddy soils. Chemosphere 2003, 50, 237–246. [Google Scholar] [CrossRef]
- Chou, C.C.-K.; Lee, C.-T.; Yuan, C.S.; Hsu, W.C.; Hsu, S.C.; Liu, S.C. Implications of the chemical transformation of Asian outflow aerosols for the long-range transport of inorganic nitrogen species. Atmos. Environ. 2008, 42, 7508–7519. [Google Scholar] [CrossRef]
- Chou, C.C.K.; Lee, C.T.; Cheng, M.T.; Yuan, C.S.; Chen, S.J.; Wu, Y.L.; Hsu, W.C.; Lung, S.C.; Hsu, S.C.; Lin, C.Y.; et al. Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan. Atmos. Chem. Phys. 2010, 10, 9563–9578. [Google Scholar] [CrossRef] [Green Version]
- Chow, J.; Watson, J.; Lowenthal, D.H.; Merrifield, T. Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Sci. Technol. 2001, 34, 23–34. [Google Scholar] [CrossRef]
- Zhang, Z.; Friedlander, S.K. A comparative study of chemical databases for fine particle Chinese aerosols. Environ. Sci. Technol. 2000, 34, 4687–4697. [Google Scholar] [CrossRef]
- Ho, C.C.; Chan, C.C.; Cho, C.W.; Lin, H.I.; Lee, J.H.; Wu, C.F. Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area. Atmos. Chem. 2015, 104, 256–263. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Chiang, H.C.; Chen, M.J.; Chuang, C.Y.; Tsen, C.M.; Fang, G.C.; Tsai, Y.I.; Chen, N.T.; Lin, T.Y.; Lin, S.L.; et al. Ambient PM2.5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact. Sci. Total Environ. 2017, 590, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Bencs, L.; Ravindra, K.; de Hoog, J.; Rasoazanany, E.O.; Deutsch, F.; Bleux, N.; Berghmans, P.; Roekens, E.; Krata, A.; Van Grieken, R. Mass and ionic composition of atmospheric fine paticles over Belgium and their relation with gaseous air pollutant. Environ. Monit. 2008, 10, 1148–1157. [Google Scholar] [CrossRef]
- Heo, J.B.; Hopke, P.K.; Yi, S.M. Source apportionment of PM2.5 in Seoul, Korea. Atmos. Chem. Phys. 2009, 9, 4957–4971. [Google Scholar] [CrossRef]
- Chen, Y.C.; Hsu, C.Y.; Lin, S.L.; Chang-Chien, G.P.; Chen, M.J.; Fang, G.C.; Chiang, H.C. Characteristics of Concentrations and Metal Compositions for PM2.5 and PM2.5-10 in Yunlin County, Taiwan during Air Quality Deterioration. Aerosol Air Qual. Res. 2015, 15, 2571–2583. [Google Scholar] [CrossRef]
- Jedynska, A.; Hoek, G.; Wang, M.; Eeftens, M.; Cyrys, J.; Keuken, M.; Ampe, C.; Beelen, R.; Cesaroni, G.; Forastiere, F.; et al. Development of Land Use Regression Models for Elemental, Organic Carbon, PAH, and Hopanes/Steranes in 10 ESCAPE/TRANSPHORM European Study Areas. Environ. Sci. Technol. 2014, 48, 14435–14444. [Google Scholar] [CrossRef] [PubMed]
- Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.; Kirchstetter, T.W.; Kean, A.J.; Strawa, A.W.; Stevenson, E.D.; Kendall, G.R. Long-term changes in emissions of nitrogen oxides and particulate matter from on-road gasoline and diesel vehicles. Atmos. Environ. 2008, 42, 220–232. [Google Scholar] [CrossRef]
- USEPA. User’s Guide/Technical Backgrounddocument for US EPA Region 9’s RSL (Regional Screening Levels) Tables. Available online: http://www. epa.gov/region9/superfund/prg/ (accessed on 17 September 2018).
- Dirgawati, M.; Heyworth, J.S.; Wheeler, A.J.; McCaul, K.A.; Blake, D.; Boeyen, J.; Cope, M.; Yeap, B.B.; Nieuwenhuijsen, M.; Brunekreef, B.; et al. Development of Land Use Regression models for particulate matter and associated components in a low air pollutant concentration airshed. Atmos. Environ. 2016, 144, 69–78. [Google Scholar] [CrossRef]
- De Hoogh, K.; Wang, M.; Adam, M.; Badaloni, C.; Beelen, R.; Birk, M.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dedele, A.; et al. Development of land use regression models for particle composition in twenty study areas in Europe. Environ. Sci. Technol. 2013, 47, 5778–5786. [Google Scholar] [CrossRef]
- Varrica, D.; Bardelli, F.; Dongarra, G.; Tamburo, E. Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues. Atmos. Environ. 2013, 64, 18–24. [Google Scholar] [CrossRef]
- Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; et al. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 2007, 41, 7219–7231. [Google Scholar] [CrossRef]
- Cheng, K.; Wang, Y.; Tian, H.; Gao, X.; Zhang, Y.; Wu, X.; Zhu, C.; Gao, J. Atmospheric emission characteristics and control policies of five precedent-controlled toxic heavy metals from anthropogenic sources in China. Environ. Sci. Technol. 2015, 49, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Mokhtara, M.M.; Taiba, R.M.; Hassima, M.H. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies. J. Air Waste Mang. 2014, 64, 867–878. [Google Scholar] [CrossRef] [Green Version]
- Das, R.; Khezri, B.; Srivastava, B.; Datta, S.; Sikdar, P.K.; Webster, R.D.; Wang, X.F. Trace element composition of PM2.5 and PM10 from Kolkata—A heavily polluted Indian metropolis. Atmos. Pollut. Res. 2015, 6, 742–750. [Google Scholar] [CrossRef]
- See, S.W.; Balasubramanian, R. Chemical characteristics of fine particles emitted from different gas cooking methods. Atmos. Environ. 2008, 42, 8852–8862. [Google Scholar] [CrossRef]
- Lafortezza, R.; Carrus, G.; Sanesi, G.; Davies, C. Benefits and well-being perceived by people visiting green spaces in periods of heat stress. Urban. For. Urban. Green. 2009, 8, 97–108. [Google Scholar] [CrossRef]
- Yin, S.; Shen, Z.; Zhou, P.; Zou, X.; Che, S.; Wang, W. Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China. Environ. Pollut. 2011, 159, 2155–2163. [Google Scholar] [CrossRef]
- Kim, J.Y.; Song, C.H.; Ghim, Y.S.; Won, J.G.; Yoon, S.C.; Carmichael, G.R.; Woo, J.H. An investigation on NH3 emissions and particulate NH+ 4 -NO− 3 formation in East Asia. Atmos. Environ. 2006, 40, 2139–2150. [Google Scholar] [CrossRef]
- Genberg, J.; Hyder, M.; Stenstrom, K.; Bergstrom, R.; Simpson, D.; Fors, E.O.; Jonsson, J.A.; Swietlicki, E. Source apportionment of carbonaceous aerosol in southern Sweden. Atmos. Chem. Phys. 2011, 11, 11387–11400. [Google Scholar] [CrossRef] [Green Version]
- Yttri, K.E.; Simpson, D.; Nojgaard, J.K.; Kristensen, K.; Genberg, J.; Stenstrom, K.; Swietlicki, E.; Hillamo, R.; Aurela, M.; Bauer, H.; et al. Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites. Atmos. Chem. Phys. 2011, 11, 13339–13357. [Google Scholar] [CrossRef] [Green Version]
- Laothawornkitkul, J.; Taylor, J.E.; Paul, N.D.; Hewitt, C.N. Biogenic volatile organic compounds in the Earth system. New Phytol. 2009, 183, 27–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monson, R.K.; Jones, R.T.; Rosenstiel, T.N.; Schnitzler, J.P. Why only some plants emit isoprene. Plant Cell Environ. 2013, 36, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.; Makes, O.; Ondracek, J.; Cusack, M.; Talbot, N.; Vodicka, P.; Kubelova, L.; Zdimal, V. Single Usage of a kitchen degreaser can alter indoor aerosol composition for days. Environ. Sci. Technol. 2017, 51, 5907–5912. [Google Scholar] [CrossRef] [PubMed]
- Amato, F.; Viana, M.; Richard, A.; Furger, M.; Prevot, A.S.H.; Nava, S.; Lucarelli, F.; Bukowiecki, N.; Alastuey, A.; Reche, C.; et al. Size and time-resolved roadside enrichment of atmospheric particulate pollutants. Atmos. Chem. Phys. 2011, 11, 2917–2931. [Google Scholar] [CrossRef] [Green Version]
- Lui, K.H.; Bandowe, B.A.; Ho, S.S.; Chuang, H.C.; Cao, J.J.; Chuang, K.J.; Lee, S.C.; Hu, D.; Ho, K.F. Characterization of chemical components and bioreactivity of fine particulate matter (PM2.5) during incense burning. Environ. Pollut. 2016, 213, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Lung, S.C.C.; Kao, M.C. Worshipper’s exposure to particulate matter in two temples in Taiwan. J. Air Waste Manag. Assoc. 2003, 53, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Lau, K.; Ng, E. Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment. Environ. Res. 2017, 157, 17–29. [Google Scholar] [CrossRef]
- Wolf, K.; Cyrys, J.; Harciníkovà, T.; Gua, J.; Kusch, T.; Hampel, R.; Schneider, A.; Peters, A. Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany. Sci. Total Environ. 2017, 579, 1531–1540. [Google Scholar] [CrossRef]
Variable Category | Variable | Data Description | Expected Direction | Data Type | Unit | Buffer |
---|---|---|---|---|---|---|
Taiwan EPA database | PM10 (season) | cold and warm seasonally average | (+) | raster data | μg/m3 | - |
PM10 (year) | annual average | (+) | raster data | μg/m3 | - | |
PM10 episode a (season) | number of days for PM10 > 125 μg/m3 | (+) | numerical data | day/season | - | |
PM10 episode a (year) | number of days for PM10 > 125 μg/m3 | (+) | numerical data | day/year | - | |
Central Weather Bureau database | Temperature (season) | cold and warm seasonally average | (+/−) | raster data | °C/season | - |
Temperature (year) | annual average | (+/−) | raster data | °C/year | - | |
Rain fall (season) | cold and warm seasonally average | (−) | raster data | mm/season | - | |
Rain fall (year) | annual average | (−) | raster data | mm/year | - | |
UV (season) | cold and warm seasonally average | (+) | raster data | nm/year | - | |
UV (year) | annual average | (+) | raster data | nm/year | - | |
Humidity | annual average | (−) | raster data | %/year | - | |
Institute of Transportation digital map data (2006) | Local road | rural road, city road, industrial road and unnamed road | (+) | area source | m b | 25–5000 m |
Main road | National highway, provincial highway, county road, city highway | (+) | area source | m b | 25–5000 m | |
All types of road | Local road + Mayor road | (+) | area source | m b | 25–5000 m | |
Industrial Development Bureau industrial database (2010) | Industrial park | distance to the nearest landmark | (−) | area source | m b | 25–5000 m |
The second national land-use survey (2007) | Purely residential area | - | (+) | Area source | m2 b | 25–5000 m |
Commercial area | - | (+) | Area source | m2 b | 25–5000 m | |
Industrial area | - | (+) | Area source | m2 b | 25–5000 m | |
Residential mixed with commercial area | Residential area + Industrial area | (+) | Area source | m2 b | 25–5000 m | |
All types of residential area | Purely residential area + Residential mixed with commercial area | (+) | Area source | m2 b | 25–5000 m | |
Rice farm | - | (+/−) | Area source | m2 b | 25–5000 m | |
Fruit orchard | - | (+/−) | Area source | m2 b | 25–5000 m | |
Mixed farm | Rice farm + Fruit orchard | (+/−) | Area source | m2 b | 25–5000 m | |
Water body | - | (−) | Area source | m2 b | 25–5000 m | |
Park and greenbelt | - | (+) | Area source | m2 b | 25–5000 m | |
Railway | distance to the measurement sites | (+) | Area source | m | - | |
National airport | distance to the measurement sites | (−) | Area source | m | - | |
Sandstone field | distance to the measurement sites | (+) | Area source | m | - | |
Point of interest (POI) landmark database (2008) | Temple | - | (+) | Point source | count | 25–5000 m |
Chinese restaurant | Chinese restaurant + Night market | (+) | Point source | count | 25–5000 m | |
Taiwan EPA environmental database | Crematorium | distance to the measurement sites | (−) | Point source | m | - |
Crematorium | distance to the measurement sites | (−) | Area source | m | - | |
Industrial sewage treatment plant | distance to the measurement sites | (−) | Area source | m | - | |
Domestic sewage treatment plant | distance to the measurement sites | (−) | Area source | m | - | |
Digital terrain model with 20 m resolution | Altitude | elevation above sea level of the measurement site | (+) | raster data | m | - |
Vegetation indices from remote sensing | NDVI | - | (−) | raster data | unitless | - |
Location of coal-fired power plants | Coal-fired power plants | distance to the measurement sites | (−) | Point source | m | - |
Variable | Log_EC | Log_OC | Log_SO42− | Log_NH4+ | Log_NO3− |
---|---|---|---|---|---|
Intercept | 0.93 | 0.22 | 0.85 | 0.37 | 0.74 |
Local road_175 | 3.92 × 10−4 (0.81) | ||||
All type of road_25 | 0.011 (0.09) | ||||
Residential mixed with Commercial area_500 | 9.55 × 10−7 (0.09) | ||||
Temple_5000 | 0.002 (0.03) | ||||
Domestic sewage treatment plant a | −3.86 × 10−6 (0.12) | ||||
Rice farm mixed with fruit orchard_125 | 1.04 × 10−4 (0.02) | ||||
Rice farm mixed with fruit orchard_175 | −2.25 × 10−4 (0.73) | −2.43 × 10−7 (0.50) | |||
Rice farm mixed with fruit orchard_5000 | 3.64 × 10−7 (0.17) | ||||
Forest_1000 | −7.19 × 10−8 (0.59) | ||||
NDVI_100 | −0.129 (0.05) | ||||
PM10 (year) | 0.004 (0.05) | 0.003 (0.06) | 0.02 (0.71) | ||
Rainfall (year) | −0.02 (0.02) | −0.017 (0.01) | |||
Temperature (year) | −0.02 (0.04) | −0.002 (0.05) | |||
UV | 0.08 (0.01) | ||||
R2 for model | 0.86 | 0.92 | 0.63 | 0.87 | 0.90 |
Adj R2 for model | 0.85 | 0.90 | 0.60 | 0.86 | 0.89 |
LOOCV R2 | 0.78 | 0.84 | 0.53 | 0.82 | 0.83 |
RMSE | 0.36 | 0.06 | 0.06 | 0.15 | 0.16 |
Variable | Log_Ba | Log_Cu | Log_Mn | Log_Sb | Log_Zn |
---|---|---|---|---|---|
Intercept | −3.43 | −0.04 | −3.75 | −2.99 | 1.82 |
Main road_4000 | 9.55 × 10−6 (0.13) | ||||
All type of residential area_1750 | 2.53 × 10−9 (0.43) | ||||
Industrial area mixed with commercial area_500 | −1.27 × 10−5 (0.05) | ||||
Industrial area mixed with commercial area_1250 | 2.18 × 10−6 (0.75) | ||||
Industrial sewage treatment plant a | 4.40 × 10−6 (0.15) | ||||
Fossil fuel power plant a | 0.19 (0.63) | ||||
NDVI_1750 | −0.61 (0.36) | ||||
NDVI_125 | −0.438 (0.03) | ||||
PM10 episode b | 0.008 (0.03) | 0.01 (0.12) | |||
PM10 (annual average) | 0.019 (0.51) | ||||
Temperature | 0.001 (0.06) | ||||
UV | 0.009 (0.11) | 0.89 (0.20) | 0.04 (0.04) | ||
R2 for model | 0.64 | 0.60 | 0.76 | 0.82 | 0.78 |
Adj R2 for model | 0.61 | 0.55 | 0.71 | 0.79 | 0.75 |
LOOCV R2 | 0.55 | 0.50 | 0.64 | 0.73 | 0.66 |
RMSE | 0.24 | 0.0041 | 0.21 | 0.22 | 0.03 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-Y.; Wu, C.-D.; Hsiao, Y.-P.; Chen, Y.-C.; Chen, M.-J.; Lung, S.-C.C. Developing Land-Use Regression Models to Estimate PM2.5-Bound Compound Concentrations. Remote Sens. 2018, 10, 1971. https://doi.org/10.3390/rs10121971
Hsu C-Y, Wu C-D, Hsiao Y-P, Chen Y-C, Chen M-J, Lung S-CC. Developing Land-Use Regression Models to Estimate PM2.5-Bound Compound Concentrations. Remote Sensing. 2018; 10(12):1971. https://doi.org/10.3390/rs10121971
Chicago/Turabian StyleHsu, Chin-Yu, Chih-Da Wu, Ya-Ping Hsiao, Yu-Cheng Chen, Mu-Jean Chen, and Shih-Chun Candice Lung. 2018. "Developing Land-Use Regression Models to Estimate PM2.5-Bound Compound Concentrations" Remote Sensing 10, no. 12: 1971. https://doi.org/10.3390/rs10121971
APA StyleHsu, C. -Y., Wu, C. -D., Hsiao, Y. -P., Chen, Y. -C., Chen, M. -J., & Lung, S. -C. C. (2018). Developing Land-Use Regression Models to Estimate PM2.5-Bound Compound Concentrations. Remote Sensing, 10(12), 1971. https://doi.org/10.3390/rs10121971