Editorial for Multi-Constellation Global Navigation Satellite Systems: Methods and Applications
Conflicts of Interest
References
- Rycroft, M.J. Understanding GPS. Principles and Applications. J. Atmos. Solar Terr. Phys. 1996, 59, 598–599. [Google Scholar] [CrossRef]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geop. Res. Solid Earth. 1997, 102, 5005–5017. [Google Scholar] [CrossRef] [Green Version]
- Ge, M.; Gendt, G.; Rothacher, M.; Shi, C.; Liu, J. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. J. Geo. 2008, 82, 389–399. [Google Scholar] [CrossRef]
- Geng, J. Triple-frequency GPS precise point positioning with rapid ambiguity resolution. J. Geo. 2013, 87, 449–460. [Google Scholar] [CrossRef]
- Nurmi, J.; Lohan, E.S.; Sand, S.; Hurskainen, H. GALILEO Positioning Technology. Signals Commun. Technol. 2014, 182, S98. [Google Scholar] [CrossRef]
- Platt, S.; Weyman, A.; Hirsch, S.; Hewett, S. The Social Behaviour Assessment Schedule (SBAS): Rationale, contents, scoring and reliability of a new interview schedule. Soc. Psychiatry 1980, 15, 43–55. [Google Scholar] [CrossRef]
- Shi, C.; Zheng, F.; Lou, Y.; Gu, S.; Zhang, W.; Dai, X.; Li, X.; Guo, H.; Gong, X.; Shi, C. National BDS Augmentation Service System (NBASS) of China: Progress and assessment. Remote Sens. 2017, 9, 1–16. [Google Scholar]
- EGNOS—The European Geostationary Navigation Overlay System—A Conerstone of Galileo. Available online: http://www.esa.int/About_Us/ESA_Publications/EGNOS_The_European_Geostationary_Navigation_Overlay_System_A_Cornerstone_of_Galileo_br_ESA_SP-1303 (accessed on 12 December 2018).
- Ilcev, D.; Moyo, S. European Geostationary Navigation Overlay Service (EGNOS). In Proceedings of the Ist-Africa Conference Proceedings, Gaborone, Botswana, 11–13 May 2011; pp. 1–14. [Google Scholar]
- Chow, C.Y.; Mokbel, M.F.; Liu, X. A peer-to-peer spatial cloaking algorithm for anonymous location-based service. In Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, Arlington, VA, USA, 5–11 November 2006; pp. 171–178. [Google Scholar]
- Dhar, S.; Varshney, U. Challenges and Business Models for Mobile Location-Based Services and Advertising; Association for Computing Machinery (ACM): New York, NY, USA, 2011. [Google Scholar]
- Geng, J.; Bock, Y.; Melgar, D.; Crowell, B.W.; Haase, J.S. A new seismogeodetic approach applied to GPS and accelerometer observations of the 2012 Brawley seismic swarm: Implications for earthquake early warning. Geochem. Geophys. Geosyst. 2013, 14, 2124–2142. [Google Scholar] [CrossRef]
- Jin, S.; Occhipinti, G.; Jin, R. GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth Sci. Rev. 2015, 147, 54–64. [Google Scholar] [CrossRef]
- Zhong, S.; Xu, C.; Yi, L.; Li, Y. Focal Mechanisms of the 2016 Central Italy Earthquake Sequence Inferred from High-Rate GPS and Broadband Seismic Waveforms. Remote Sens. 2018, 10, 512. [Google Scholar] [CrossRef]
- Dong, D.N.; Bock, Y. Global Positioning System Network Analysis With Phase Ambiguity Resolution Applied to Crustal Deformation Studies in California. J. Geophys. Res. Solid Eart 1989, 94, 3949–3966. [Google Scholar] [CrossRef]
- Kim, D.; Langley, R.B.; Bond, J.; Chrzanowski, A. Local deformation monitoring using GPS in an open pit mine: initial study. Gps Solu. 2003, 7, 176–185. [Google Scholar] [CrossRef]
- Chen, Q.; Jiang, W.; Meng, X.; Jiang, P.; Wang, K.; Xie, Y.; Ye, J. Vertical Deformation Monitoring of the Suspension Bridge Tower Using GNSS: A Case Study of the Forth Road Bridge in the UK. Remote Sens. 2018, 10, 364. [Google Scholar] [CrossRef]
- Liu, R.; Zou, R.; Li, J.; Zhang, C.; Zhao, B.; Zhang, Y. Vertical Displacements Driven by Groundwater Storage Changes in the North China Plain Detected by GPS Observations. Remote Sens. 2018, 10, 259. [Google Scholar] [CrossRef]
- Pan, L.; Li, X.; Zhang, X.; Li, X.; Lu, C.; Zhao, Q.; Liu, J. Considering Inter-Frequency Clock Bias for BDS Triple-Frequency Precise Point Positioning. Remote Sens. 2017, 9, 734. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Shi, C.; Fang, R.; Zhao, Q.; Meng, X.; Yang, G.; Bai, W. GPS and BeiDou Differential Code Bias Estimation Using Fengyun-3C Satellite Onboard GNSS Observations. Remote Sens. 2017, 9, 1239. [Google Scholar] [CrossRef]
- Liu, Y.; Song, W.; Lou, Y.; Ye, S.; Zhang, R. GLONASS phase bias estimation and its PPP ambiguity resolution using homogeneous receivers. GPS Solut. 2017, 21, 427–437. [Google Scholar] [CrossRef]
- Jia, C.; Zhao, L.; Li, L.; Li, H.; Cheng, J.; Li, Z. Improving the Triple-Carrier Ambiguity Resolution with a New Ionosphere-Free and Variance-Restricted Method. Remote Sens. 2017, 9, 1108. [Google Scholar] [CrossRef]
- Chen, M.; Liu, Y.; Guo, J.; Song, W.; Zhang, P.; Wu, J.; Zhang, D. Precise Orbit Determination of BeiDou Satellites with Contributions from Chinese National Continuous Operating Reference Stations. Remote Sens. 2017, 9, 810. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, X.; Qu, L.; Zhao, Q. Precise Orbit Determination of FY-3C with Calibration of Orbit Biases in BeiDou GEO Satellites. Remote Sens. 2018, 10, 382. [Google Scholar] [CrossRef]
- Wang, C.; Guo, J.; Zhao, Q.; Liu, J. Solar Radiation Pressure Models for BeiDou-3 I2-S Satellite: Comparison and Augmentation. Remote Sens. 2018, 10, 118. [Google Scholar] [CrossRef]
- Zhao, Q.; Yao, Y.; Cao, X.; Zhou, F.; Xia, P. An Optimal Tropospheric Tomography Method Based on the Multi-GNSS Observations. Remote Sens. 2018, 10, 234. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, L.; Wang, J.; Zhang, C. Studying Ionosphere Responses to a Geomagnetic Storm in June 2015 with Multi-Constellation Observations. Remote Sens. 2018, 10, 666. [Google Scholar] [CrossRef]
- Krypiak-Gregorczyk, A.; Wielgosz, P.; Borkowski, A. Ionosphere Model for European Region Based on Multi-GNSS Data and TPS Interpolation. Remote Sens. 2017, 9, 1221. [Google Scholar] [CrossRef]
- Wang, C.; Shi, C.; Fan, L.; Zhang, H. Improved Modeling of Global Ionospheric Total Electron Content Using Prior Information. Remote Sens. 2018, 10, 63. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, W. On-Board GNSS/IMU Assisted Feature Extraction and Matching for Oblique UAV Images. Remote Sens. 2017, 9, 813. [Google Scholar] [CrossRef]
- Li, T.; Zhang, H.; Gao, Z.; Chen, Q.; Niu, X. High-accuracy positioning in urban environments using single-frequency multi-GNSS RTK/MEMSIMU integration. Remote Sens. 2018, 10, 205. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, J.; Ge, M. Editorial for Multi-Constellation Global Navigation Satellite Systems: Methods and Applications. Remote Sens. 2018, 10, 2023. https://doi.org/10.3390/rs10122023
Geng J, Ge M. Editorial for Multi-Constellation Global Navigation Satellite Systems: Methods and Applications. Remote Sensing. 2018; 10(12):2023. https://doi.org/10.3390/rs10122023
Chicago/Turabian StyleGeng, Jianghui, and Maorong Ge. 2018. "Editorial for Multi-Constellation Global Navigation Satellite Systems: Methods and Applications" Remote Sensing 10, no. 12: 2023. https://doi.org/10.3390/rs10122023
APA StyleGeng, J., & Ge, M. (2018). Editorial for Multi-Constellation Global Navigation Satellite Systems: Methods and Applications. Remote Sensing, 10(12), 2023. https://doi.org/10.3390/rs10122023