A Comparative Assessment of Different Modeling Algorithms for Estimating Leaf Nitrogen Content in Winter Wheat Using Multispectral Images from an Unmanned Aerial Vehicle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Data Collection
2.2.1. UAV System and Image Acquisition
2.2.2. Ground Sampling
2.3. Image Processing
2.4. Retrieval Techniques
2.4.1. Parametric Modeling Algorithms
2.4.2. Non-Parametric Modeling Algorithms
2.4.3. Physical Based Modeling
2.5. Model Calibration and Validation
3. Results
3.1. Optimal VI Determination
3.2. Optimal Non-Parametric Modeling Algorithm Determination
3.3. Performance of LUT-Based PROSAIL Inversion Performance
3.4. Effects of Growth Stage, Cultivar, and Cultivation Factors on Estimation Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
UAV | unmanned aerial vehicle |
RS | remote sensing |
LNC | leaf nitrogen content |
LAI | leaf area index |
LCC | leaf chlorophyll content |
SPAD | soil and plant analyzer development |
RVI | ratio vegetation index |
DVI | difference vegetation index |
NDVI | normalized difference vegetation index |
RDVI | renormalized difference vegetation index |
SAVI | soil adjusted vegetation index |
OSAVI | optimized soil adjusted vegetation index |
VIopt | optimized vegetation index |
MSR | modified sample ratio |
EVI | enhanced vegetation index |
MCARI | modified chlorophyll absorption in reflectance index |
TCARI | transformed chlorophyll absorption in reflectance index |
TBI | three-band index |
VOG | Vogelmann index |
MTCI | MERIS terrestrial chlorophyll index |
LSLR | least-squares linear |
PCR | principal component |
PLSR | partial least-squares regression |
ANN | artificial neutral networks |
DT | decision trees |
RT | regression trees |
BaT | bagging trees |
BoT | boosting trees |
RF | random forest |
RVM | relevance vector machine |
KRR | kernel ridge |
GPR | Gaussian processes regressions |
VH-GPR | variational heteroscedastic GPR |
ELM | extreme learning machines |
RTM | radiative transfer model |
LUT | look-up-table |
R2 | determination coefficient |
RMSE | root mean square error |
RRMSE | relative root mean square error |
ILS | incident light sensor |
GCP | ground control point |
ROI | region of interest |
References
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of spectral remote sensing for agronomic decisions. Agron. J. 2008, 100, 117–131. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Tan, C.; Guo, W.; Wang, J. Predicting grain protein content of winter wheat based on Landsat TM images and leaf nitrogen content. In Proceedings of the International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 24–26 June 2011. [Google Scholar]
- Eitel, J.U.H.; Long, D.S.; Gessler, P.E.; Smith, A.M.S. Using in-situ measurements to evaluate the new RapidEyeTM satellite series for prediction of wheat nitrogen status. Int. J. Remote Sens. 2007, 28, 4183–4190. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Yuan, F.; Gnyp, M.L.; Yao, Y.; Cao, Q.; Wang, H.; Lenz-Wiedemann, V.I.; Bareth, G. Potential of RapidEye and WorldView-2 satellite data for improving rice nitrogen status monitoring at different growth stages. Remote Sens. 2017, 9, 227. [Google Scholar] [CrossRef]
- Boegh, E.; Soegaard, H.; Broge, N.; Hasager, C.B.; Jensen, N.O.; Schelde, K.; Thomsen, A. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sens. Environ. 2002, 81, 179–193. [Google Scholar] [CrossRef]
- Tian, Y.C.; Yao, X.; Yang, J.; Cao, W.X.; Hannaway, D.B.; Zhu, Y. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground-and space-based hyperspectral reflectance. Field Crops Res. 2011, 120, 299–310. [Google Scholar] [CrossRef]
- Yao, X.; Ren, H.; Cao, Z.; Tian, Y.; Cao, W.; Zhu, Y.; Cheng, T. Detecting leaf nitrogen content in wheat with canopy hyperspectrum under different soil backgrounds. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 114–124. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Li, D.; Zhou, X.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sens. 2018, 10, 824. [Google Scholar] [CrossRef]
- Yao, X.; Wang, N.; Liu, Y.; Cheng, T.; Tian, Y.; Chen, Q.; Zhu, Y. Estimation of wheat LAI at middle to high levels using unmanned aerial vehicle narrowband multispectral imagery. Remote Sens. 2017, 9, 1304. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens. 2017, 9, 708. [Google Scholar] [CrossRef]
- Gnyp, M.L.; Panitzki, M.; Reusch, S.; Jasper, J.; Bolten, A.; Bareth, G. Comparison between tractor -based and UAV-based spectrometer measurements in winter wheat. In Proceedings of the 13th International Conference on Precision Agriculture, Monticello, IL, USA, 31 July–3 August 2016. [Google Scholar]
- Li, J.; Zhang, F.; Qian, X.; Zhu, Y.; Shen, G. Quantification of rice canopy nitrogen balance index with digital imagery from unmanned aerial vehicle. Remote Sens. Lett. 2015, 6, 183–189. [Google Scholar] [CrossRef]
- Stroppiana, D.; Boschetti, M.; Brivio, P.A.; Bocchi, S. Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crops Res. 2009, 111, 119–129. [Google Scholar] [CrossRef]
- Wang, W.; Yao, X.; Yao, X.; Tian, Y.; Liu, X.; Ni, J.; Cao, W.; Zhu, Y. Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crops Res. 2012, 129, 90–98. [Google Scholar] [CrossRef]
- Rivera, J.P.; Verrelst, J.; Delegido, J.; Veroustraete, F.; Moreno, J. On the semi-automatic retrieval of biophysical parameters based on spectral index optimization. Remote Sens. 2014, 6, 4927–4951. [Google Scholar] [CrossRef]
- Zhu, Y.; Tian, Y.; Yao, X.; Liu, X.; Cao, W. Analysis of common canopy reflectance spectra for indicating leaf nitrogen concentrations in wheat and rice. Plant Prod. Sci. 2007, 10, 400–411. [Google Scholar] [CrossRef]
- Inoue, Y.; Sakaiya, E.; Zhu, Y.; Takahashi, W. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sens. Environ. 2012, 126, 210–221. [Google Scholar] [CrossRef]
- Yao, X.; Huang, Y.; Shang, G.; Zhou, C.; Cheng, T.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of six algorithms to monitor wheat leaf nitrogen concentration. Remote Sens. 2015, 7, 14939–14966. [Google Scholar] [CrossRef]
- Atzberger, C.; Guérif, M.; Baret, F.; Werner, W. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electron. Agric. 2010, 73, 165–173. [Google Scholar] [CrossRef]
- Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and-3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F.; Andrieu, B.; Danson, F.M.; Jaggard, K. Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sens. Environ. 1995, 52, 163–172. [Google Scholar] [CrossRef]
- Liang, L.; Di, L.; Zhang, L.; Deng, M.; Qin, Z.; Zhao, S.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 2015, 165, 123–134. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, C.; Xing, Z.; Huang, W.; Wang, J. LAI Inversion of Spring Wheat Based on PROBA/CHRIS Hyperspectral Multi-Angular Data and PROSAIL Model. Available online: http://xueshu.baidu.com/usercenter/paper/show?paperid=7ff0cdf37366c37dd6406bf9aa80a99f&site=xueshu_se&hitarticle=1 (accessed on 11 December 2018).
- Botha, E.J.; Leblon, B.; Zebarth, B.; Watmough, J. Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 360–374. [Google Scholar] [CrossRef]
- Uddling, J.; Gelang-Alfredsson, J.; Piikki, K.; Pleijel, H. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 2007, 91, 37–46. [Google Scholar] [CrossRef]
- Kelcey, J.; Lucieer, A. Sensor correction of a 6-band multispectral imaging sensor for UAV remote sensing. Remote Sens. 2012, 4, 1462–1493. [Google Scholar] [CrossRef]
- Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Reyniers, M.; Walvoort, D.J.; De Baardemaaker, J. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat. Int. J. Remote Sens. 2006, 27, 4159–4179. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey Iii, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Tian, Y.C.; Gu, K.J.; Chu, X.; Yao, X.; Cao, W.X.; Zhu, Y. Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice. Plant Soil 2014, 376, 193–209. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Noland, T.L.; Mohammed, G.H.; Sampson, P.H. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1491–1507. [Google Scholar] [CrossRef] [Green Version]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Gómez-Chova, L.; Muñoz-Marí, J.; Lázaro-Gredilla, M.; Verrelst, J. simpleR: A Simple Educational Matlab Toolbox for Statistical Regression. In: V2. Available online: https://www.uv.es/gcamps/software.html (accessed on 10 December 2018).
- Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods-A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, C.L.; Zhao, L.Y.; Zhu, Y.; Cao, W.X.; Tian, Y.C.; Cheng, T.; Wang, X. Estimating wheat yield by integrating the WheatGrow and PROSAIL models. Field Crops Res. 2016, 192, 55–66. [Google Scholar] [CrossRef]
- Li, H.; Liu, G.; Liu, Q.; Chen, Z.; Huang, C. Retrieval of winter wheat leaf area index from Chinese GF-1 satellite data using the PROSAIL model. Sensors 2018, 18, 1120. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.P.; Verrelst, J.; Leonenko, G.; Moreno, J. Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL model. Remote Sens. 2013, 5, 3280–3304. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Miao, Y.; Zhao, G.; Yuan, F.; Ma, X.; Tan, C.; Yu, W.; Gnyp, M.L.; Lenz-Wiedemann, V.I.; Rascher, U.; et al. Satellite remote sensing-based in-season diagnosis of rice nitrogen status in Northeast China. Remote Sens. 2015, 7, 10646–10667. [Google Scholar] [CrossRef]
- Yao, X.; Zhu, Y.; Tian, Y.; Feng, W.; Cao, W. Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 89–100. [Google Scholar] [CrossRef]
- Li, F.; Gnyp, M.L.; Jia, L.; Miao, Y.; Yu, Z.; Koppe, W.; Zhang, F. Estimating N status of winter wheat using a handheld spectrometer in the North China Plain. Field Crops Res. 2008, 106, 77–85. [Google Scholar] [CrossRef]
- Nigam, R.; Bhattacharya, B.K.; Vyas, S.; Oza, M.P. Retrieval of wheat leaf area index from AWiFS multispectral data using canopy radiative transfer simulation. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 173–185. [Google Scholar] [CrossRef]
- Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 1998, 64, 234–253. [Google Scholar] [CrossRef]
- Ustin, S.L. Remote sensing of canopy chemistry. Proc. Natl. Acad. Sci. USA 2013, 10, 804–805. [Google Scholar] [CrossRef] [PubMed]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Jiang, J.; Comar, A.; Burger, P.; Bancal, P.; Weiss, M.; Baret, F. Estimation of leaf traits from reflectance measurements: Comparison between methods based on vegetation indices and several versions of the PROSPECT model. Plant Methods 2018, 14, 23. [Google Scholar] [CrossRef] [PubMed]
- Cammarano, D.; Fitzgerald, G.; Basso, B.; O’Leary, G.; Chen, D.; Grace, P.; Fiorentino, C. Use of the Canopy Chlorophyl Content Index (CCCI) for remote estimation of wheat nitrogen content in rainfed environments. Agron. J. 2011, 103, 1597–1603. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Z.; Wang, J.; Huang, W.; Guo, T. Early detection of canopy nitrogen deficiency in winter wheat (Triticum aestivum L.) based on hyperspectral measurement of canopy chlorophyll status. N. Z. J. Crop Hortic. Sci. 2011, 39, 251–262. [Google Scholar] [CrossRef]
Experiment | Year | Cultivar | N Rate (kg/ha) | Planting Density (plants/ha) | Sampling Date | Growth Stage | N |
---|---|---|---|---|---|---|---|
Exp. 1 | 2013–2014 | Yangmai 18 Shengxuan 6 | 0, 100, 300 | 1.5 × 106 3.0 × 106 | 14 March 9/15/23 April 6 May | Jointing, Booting, Heading, Anthesis, Filling | 159 |
Exp. 2 | 2013–2014 | Xumai 30 Ningmai 13 | 0, 75, 150, 225, 300 | 2.4 × 106 | 14 March 9/15/23 April 6 May | Jointing, Booting, Heading, Anthesis, Filling | 135 |
Exp. 3 | 2014–2015 | Yangmai 18 Shengxuan 6 | 0, 100, 300 | 1.5 × 106 2.4 × 106 | 26 March 8/17/25 April 6 May | Jointing, Booting, Heading, Anthesis, Filling | 164 |
UAV | Camera | ||
---|---|---|---|
Weight (g) | 2050 | Weight (g) | 700 |
Battery weight (g) | 520 | Geometric resolution (pixel) | 1280 × 1024 |
Maximum payload (g) | 2500 | Radiometric resolution (bit) | 10 |
Flight duration (min) | 8–41 | Speed (frame/s) | 1.3 |
Radius (m) | 1000 | Focal length (mm) | 9.6 |
Index | Formula | Reference |
---|---|---|
Two-band | ||
Ratio VI (RVI) | Rλ1/Rλ2 | [31] |
Difference VI (DVI) | Rλ1 − Rλ2 | [31] |
NDVI | (Rλ1 − Rλ2)/(Rλ1 + Rλ2) | [32] |
Renormalized difference VI (RDVI) | (Rλ1 − Rλ2)/(Rλ1 + Rλ2)0.5 | [33] |
Soil adjusted VI (SAVI) | 1.5(Rλ1 − Rλ2)/(Rλ1 + Rλ2 + 0.5) | [34] |
Optimized soil adjusted VI (OSAVI) | (1 + 0.16)(Rλ1 − Rλ2)/(Rλ1 + Rλ2 + 0.16) | [35] |
Optimized VI (VIopt) | (1 + 0.45)(Rλ12 + 1)/(Rλ2 + 0.45) | [36] |
Modified sample ratio (MSR) | ((Rλ1/Rλ2) − 1)/(SQRT((Rλ1/Rλ2) + 1)) | [37] |
Three-band | ||
Enhanced VI (EVI) | 2.5(Rλ1 − Rλ2)/(Rλ1 + 6Rλ2 − 7.5Rλ3 + 1) | [38] |
Modified normalized difference (mND) | (Rλ1 − Rλ2)/(Rλ1 + Rλ2 − 2Rλ3) | [39] |
Modified sample ratio (mSR) | (Rλ1 − Rλ2)/(Rλ3 − Rλ2) | [39] |
Modified chlorophyll absorption in RI (MCARI) | (Rλ1 − Rλ2 − 0.2(Rλ1 − Rλ3))(Rλ1/Rλ2) | [40] |
Transformed chlorophyll absorption in RI (TCARI) | 3((Rλ1 − Rλ2) − 0.2(Rλ1 − Rλ3)(Rλ1/Rλ2)) | [41] |
Three-band index 1 (TBI1) | (Rλ1 − Rλ2 − Rλ3)/(Rλ1 + Rλ2 + Rλ3) | [42] |
Three-band index 2 (TBI2) | (Rλ1 − Rλ2 + 2Rλ3)/(Rλ1 + Rλ2 − 2Rλ3) | [17] |
Four-band | ||
Vogelmann index (VOG) | (Rλ1 − Rλ2)/(Rλ3 + Rλ4) | [43] |
MERIS terrestrial chlorophyll index (MTCI) | (Rλ1 − Rλ2)/(Rλ3 − Rλ4) | [44] |
TCARI/OSAVI | TCARI/OSAVI | [41] |
MCARI/OSAVI | MCARI/OSAVI | [40] |
Parameters | Units | Range | Distribution |
---|---|---|---|
Leaf: PROSPECT-5 | |||
Leaf structure index (N) | Unitless | 1.2–1.8 | Gaussian |
Leaf chlorophyll content (LCC) | [μg/cm2] | 25–75 | Gaussian |
Leaf dry matter content (Cm) | [g/cm2] | 0.013 | |
Leaf water content (Cw) | [cm] | 0.018 | |
Canopy: 4SAIL | |||
Leaf area index (LAI) | [m2/m2] | 0–7 | Gaussian |
Soil scaling factor (αsoil) | Unitless | 0.3 | |
Average leaf angle (ALA) | [°] | 60 | |
Hotspot parameter (HotS) | [m/m] | 0.2 | |
Diffuse incoming solar radiation (skyl) | [%] | 10 | |
Sun zenith angle (θs) | [°] | 25 | |
View zenith angle (θv) | [°] | 0 | |
Sun-sensor azimuth angle (Φ) | [°] | 0 |
Method | Calibration | Validation |
---|---|---|
Parametric | 10-fold cross validation, nine sub-datasets used for calibration (training), the rest for validation (test), repeated 10 times | |
Non-parametric | ||
Physical-based model | LCC retrieved from PROSAIL, LNC obtained through the empirically linear model between LCC and LNC with measured data | All retrieved LNC values compared with measured LNC values |
VI | Optimal Bands | R2 | RMSE (%) | Processing Speed (s) | |
---|---|---|---|---|---|
Two-band | RVI | λ1: 700; λ2: 800 | 0.49 | 0.52 | 0.029 |
DVI | λ1: 800; λ2: 700 | 0.67 | 0.41 | 0.029 | |
NDVI | λ1: 800; λ2: 700 | 0.49 | 0.52 | 0.046 | |
RDVI | λ1: 800; λ2: 700 | 0.73 | 0.38 | 0.029 | |
SAVI | λ1: 800; λ2: 700 | 0.73 | 0.38 | 0.030 | |
OSAVI | λ1: 800; λ2: 671 | 0.70 | 0.40 | 0.029 | |
VIopt | λ1: 800; λ2: 671 | 0.69 | 0.40 | 0.029 | |
MSR | λ1: 700; λ2: 800 | 0.48 | 0.52 | 0.028 | |
Three-band | EVI | λ1: 800; λ2: 700; λ3: 490 | 0.73 | 0.38 | 0.031 |
mND | λ1: 800; λ2: 700; λ3: 490 | 0.69 | 0.40 | 0.029 | |
mSR | λ1: 700; λ2: 490; λ3: 800 | 0.68 | 0.41 | 0.026 | |
MCARI | λ1: 550; λ2: 700; λ3: 800 | 0.69 | 0.41 | 0.029 | |
TCARI | λ1: 550; λ2: 700; λ3: 800 | 0.68 | 0.41 | 0.028 | |
TBI1 | λ1: 671; λ2: 700; λ3: 550 | 0.56 | 0.48 | 0.028 | |
TBI2 | λ1: 800; λ2: 490; λ3: 671 | 0.55 | 0.49 | 0.028 | |
Four-band | VOG | λ1: 490; λ2: 700; λ3: 800; λ4: 671 | 0.70 | 0.40 | 0.027 |
MTCI | λ1: 671; λ2: 800; λ3: 700; λ4: 490 | 0.69 | 0.40 | 0.027 | |
TCARI/OSAVI | λ1: 550; λ2: 700; λ3: 800; λ4: 490 | 0.66 | 0.42 | 0.028 | |
MCARI/OSAVI | λ1: 550; λ2: 700; λ3: 800; λ4: 490 | 0.66 | 0.42 | 0.028 |
Non-Parametric Algorithm | R2 | RMSE (%) | Processing Speed (s) |
---|---|---|---|
Random Forest (RF) | 0.79 | 0.33 | 2.284 |
Bagging Trees (BaT) | 0.78 | 0.34 | 2.700 |
Kernel Ridge Regression (KRR) | 0.78 | 0.35 | 1.934 |
Neural Network (NN) | 0.77 | 0.35 | 10.406 |
VH Gaussian Process Regression (VH-GPR) | 0.77 | 0.35 | 17.059 |
Gaussian Process Regression (GPR) | 0.77 | 0.35 | 4.265 |
Extreme Learning Machine (ELM) | 0.76 | 0.36 | 20.068 |
Least-Squares Linear Regression (LSLR) | 0.75 | 0.36 | 0.007 |
Boosting Trees (BoT) | 0.75 | 0.37 | 2.301 |
Relevance Vector Machine (RVM) | 0.75 | 0.37 | 268.473 |
Partial Least-Squares Regression (PLSR) | 0.74 | 0.37 | 0.016 |
Principal Component Regression (PCR) | 0.73 | 0.38 | 0.009 |
Regression Trees (RT) | 0.69 | 0.40 | 0.616 |
Cost Function | Noise (%) | Multiple Solutions (%) | R2 | RMSE (μg/cm2) | Processing Speed (s) |
---|---|---|---|---|---|
K(x) = log(x)2 | 29 | 9 | 0.81 | 7.05 | 2.04 |
K(x) = x(log(x)) − x | 41 | 41.5 | 0.75 | 8.24 | 1.85 |
Neyman chi-square | 37 | 10.5 | 0.74 | 8.74 | 1.86 |
W Kagan | 37 | 10.5 | 0.74 | 8.74 | 1.85 |
Kullback-Leibler | 45 | 11.5 | 0.81 | 8.98 | 1.92 |
Jeffreys-Kullback-Leibler | 45 | 19.5 | 0.80 | 9.17 | 1.76 |
Bhattacharyya divergence | 45 | 19.5 | 0.81 | 9.26 | 2.03 |
Pearson chi-square | 50 | 43 | 0.78 | 9.33 | 1.85 |
L-divergence Lin | 47 | 20.5 | 0.81 | 9.35 | 2.16 |
Shannon (1948) | 47 | 20.5 | 0.81 | 9.35 | 1.98 |
Shannon entropy | 50 | 21.5 | 0.81 | 9.45 | 1.82 |
Harmonique toussaint | 50 | 21 | 0.81 | 9.50 | 1.85 |
K-divergence Lin | 50 | 30.5 | 0.80 | 9.54 | 1.96 |
Negative exponential disparity | 48 | 20.5 | 0.79 | 9.65 | 1.92 |
Exponential | 50 | 48 | 0.59 | 11.84 | 1.98 |
Normal distribution-LSE | 50 | 50 | 0.47 | 13.10 | 1.74 |
Geman and McClure | 50 | 50 | 0.46 | 13.16 | 1.79 |
K(x) = −log(x) + x | 39 | 50 | 0.79 | 13.19 | 1.98 |
Least absolute error | 50 | 50 | 0.34 | 15.16 | 1.75 |
K(x) = log(x) + 1/x | 50 | 50 | 0.07 | 17.61 | 1.96 |
Sub-Group | Treatment | Different Modeling Algorithms | ||
---|---|---|---|---|
RDVI | RF | LUT | ||
Growth stage | Jointing | 16.0 | 11.4 | 16.53 |
Booting | 8.8 | 8.8 | 12.60 | |
Heading | 10.0 | 9.9 | 12.80 | |
Anthesis | 11.7 | 11.7 | 14.03 | |
Filling | 17.9 | 16.2 | 22.92 | |
Variety | Yangmai 18 | 13.1 | 11.3 | 16.34 |
Shengxuan 6 | 14.0 | 12.0 | 16.43 | |
Xumai 30 | 13.4 | 11.9 | 16.51 | |
Ningmai 13 | 10.4 | 10.7 | 15.41 | |
Plant density | 1.5 × 106 plants/ha | 12.1 | 12.1 | 13.41 |
2.4 × 106 plants/ha | 12.4 | 11.7 | 16.30 | |
3 × 106 plants/ha | 14.4 | 11.1 | 16.34 | |
Year | 2014 | 12.0 | 11.2 | 0.14 |
2015 | 14.6 | 12.2 | 0.18 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Li, W.; Jiang, J.; Liu, Y.; Cheng, T.; Tian, Y.; Zhu, Y.; Cao, W.; Zhang, Y.; Yao, X. A Comparative Assessment of Different Modeling Algorithms for Estimating Leaf Nitrogen Content in Winter Wheat Using Multispectral Images from an Unmanned Aerial Vehicle. Remote Sens. 2018, 10, 2026. https://doi.org/10.3390/rs10122026
Zheng H, Li W, Jiang J, Liu Y, Cheng T, Tian Y, Zhu Y, Cao W, Zhang Y, Yao X. A Comparative Assessment of Different Modeling Algorithms for Estimating Leaf Nitrogen Content in Winter Wheat Using Multispectral Images from an Unmanned Aerial Vehicle. Remote Sensing. 2018; 10(12):2026. https://doi.org/10.3390/rs10122026
Chicago/Turabian StyleZheng, Hengbiao, Wei Li, Jiale Jiang, Yong Liu, Tao Cheng, Yongchao Tian, Yan Zhu, Weixing Cao, Yu Zhang, and Xia Yao. 2018. "A Comparative Assessment of Different Modeling Algorithms for Estimating Leaf Nitrogen Content in Winter Wheat Using Multispectral Images from an Unmanned Aerial Vehicle" Remote Sensing 10, no. 12: 2026. https://doi.org/10.3390/rs10122026
APA StyleZheng, H., Li, W., Jiang, J., Liu, Y., Cheng, T., Tian, Y., Zhu, Y., Cao, W., Zhang, Y., & Yao, X. (2018). A Comparative Assessment of Different Modeling Algorithms for Estimating Leaf Nitrogen Content in Winter Wheat Using Multispectral Images from an Unmanned Aerial Vehicle. Remote Sensing, 10(12), 2026. https://doi.org/10.3390/rs10122026