Accuracy Assessment on MODIS (V006), GLASS and MuSyQ Land-Surface Albedo Products: A Case Study in the Heihe River Basin, China
Abstract
:1. Introduction
2. Experimental Data
2.1. Study Area and In Situ Observation
2.2. High Spatial Resolution Albedo Map
2.3. MODIS (V006), GLASS and MuSyQ Albedo Products
3. Methods
3.1. Representativeness Error
3.2. The Reference Albedo Calculation
3.3. Assessment Method
4. Results and Discussions
4.1. Spatial Heterogeneity and Representativeness Errors of Ground Sites
4.2. Direct Validation Results
4.3. Multi-scale Validation Strategy Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix
References
- Liang, S. Quantitative Remote Sensing of Land Surfaces; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; Volume 19, pp. 413–415. [Google Scholar]
- Dickinson, R.E. Land processes in climate models. Remote Sens. Environ. 1995, 51, 27–38. [Google Scholar] [CrossRef]
- Liu, J.; Schaaf, C.; Strahler, A.; Jiao, Z.; Shuai, Y.; Zhang, Q.; Dutton, E.G. Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo retrieval algorithm: Dependence of albedo on solar zenith angle. J. Geophys. Res. Atmos. 2009, 114, D01106. [Google Scholar] [CrossRef]
- Souza, R.B.; Mata, M.M.; Garcia, C.A.; Kampel, M.; Oliveira, E.N.; Lorenzzetti, J.A. Multi-sensor satellite and in situ measurements of a warm core ocean eddy south of the Brazil–Malvinas Confluence region. Remote Sens. Environ. 2006, 100, 52–66. [Google Scholar] [CrossRef]
- Liang, S. A direct algorithm for estimating land surface broadband albedos from MODIS imagery. IEEE Trans. Geosci. Remote Sens. 2003, 41, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, V.; Barkstrom, B.R.; Harrison, E.F. Climate and the Earth’s radiation budget. Phys. Today 1989, 74, 22–32. [Google Scholar] [CrossRef]
- Wei, X.; Hahmann, A.N.; Dickinson, R.E.; Yang, Z.L.; Zeng, X.; Schaudt, K.J. Comparison of albedos computed by land surface models and evaluation against remotely sensed data. J. Geophys. Res. Atmos. 2001, 106, 20687–20702. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Ma, A.; soon Ong, Y.; Zhu, Z.; Zhang, L. Computational intelligence in optical remote sensing image processing. Appl. Soft Comput. 2017, 64, 75–93. [Google Scholar] [CrossRef]
- Lucht, W.; Hyman, A.H.; Strahler, A.H.; Barnsley, M.J.; Hobson, P.; Muller, J.P. A comparison of satellite-derived spectral albedos to ground-based broadband albedo measurements modeled to satellite spatial scale for a semidesert landscape. Remote Sens. Environ. 2000, 74, 85–98. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.; Qu, Y.; Liu, N.; Liu, S.; Tang, H.; Liang, S. Preliminary evaluation of the long-term GLASS albedo product. Int. J. Digit. Earth 2013, 6, 69–95. [Google Scholar] [CrossRef]
- Qu, Y.; Liu, Q.; Liang, S.; Wang, L.; Liu, N.; Liu, S. Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 907–919. [Google Scholar] [CrossRef]
- Mira, M.; Weiss, M.; Baret, F.; Courault, D.; Hagolle, O.; Gallego-Elvira, B.; Olioso, A. The MODIS (collection V006) BRDF/albedo product MCD43D: Temporal course evaluated over agricultural landscape. Remote Sens. Environ. 2015, 170, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Wen, J.; Xiao, Q.; Liu, Q.; Peng, J.; Dou, B.; Liu, Q. Coarse scale in situ albedo observations over heterogeneous snow-free land surfaces and validation strategy: A case of MODIS albedo products preliminary validation over northern China. Remote Sens. Environ. 2016, 184, 25–39. [Google Scholar] [CrossRef]
- Schaaf, C.; Wang, Z. MCD43A3: MODIS/Terra and Aqua BRDF/Albedo Daily L3 Global 500 m V006 [Data Set]; NASA EOSDIS Land Processes DAAC, USGS/Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2015.
- Govaerts, Y.M.; Lattanzio, A.; Taberner, M.; Pinty, B. Generating global surface albedo products from multiple geostationary satellites. Remote Sens. Environ. 2008, 112, 2804–2816. [Google Scholar] [CrossRef]
- Jin, Y.; Gao, F.; Schaaf, C.B.; Li, X. Improving modis surface BRDF/albedo retrieval with MISR multiangle observations. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1593–1604. [Google Scholar]
- Wen, J.; Dou, B.; You, D.; Tang, Y.; Xiao, Q.; Liu, Q.; Liu, Q. Forward a Small-Timescale BRDF/Albedo by Multisensor Combined BRDF Inversion Model. IEEE Trans. Geosci. Remote Sens. 2017, 55, 683–697. [Google Scholar] [CrossRef]
- Bhattacharya, B.K.; Mallick, K.; Patel, N.K.; Parihar, J.S. Regional clear sky evapotranspiration over agricultural land using remote sensing data from Indian geostationary meteorological satellite. J. Hydrol. 2010, 387, 65–80. [Google Scholar] [CrossRef]
- Jacob, F.; Olioso, A.; Weiss, M.; Baret, F.; Hautecoeur, O. Mapping short-wave albedo of agricultural surfaces using airborne PolDER data. Remote Sens. Environ. 2002, 80, 36–46. [Google Scholar] [CrossRef]
- Jin, Y.; Schaaf, C.B.; Woodcock, C.E.; Gao, F.; Li, X.; Strahler, A.H.; Liang, S. Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Salomon, J.G.; Schaaf, C.B.; Strahler, A.H.; Gao, F.; Jin, Y. Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the aqua and terra platforms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1555–1565. [Google Scholar] [CrossRef]
- Román, M.O.; Schaaf, C.B.; Woodcock, C.E.; Strahler, A.H.; Yang, X.Y.; Braswell, R.H.; Gu, L. The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sens. Environ. 2009, 113, 2476–2498. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Schaaf, C.B.; Chopping, M.J.; Strahler, A.H.; Wang, J.; Roman, M.O.; Shuai, Y. Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra. Remote Sens. Environ. 2012, 117, 264–280. [Google Scholar] [CrossRef]
- Cescatti, A.; Marcolla, B.; Vannan, S.K.S.; Pan, J.Y.; Román, M.O.; Yang, X.; Schaaf, C.B. Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sens. Environ. 2012, 121, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Roman, M.O.; Gatebe, C.K.; Shuai, Y.; Wang, Z.; Gao, F.; Masek, J.G.; Schaaf, C.B. Use of in situ and airborne multiangle data to assess MODIS-and Landsat-based estimates of directional reflectance and albedo. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1393–1404. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Strahler, A.H.; Chopping, M.J.; Román, M.O.; Shuai, Y.; Fitzjarrald, D.R. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sens. Environ. 2014, 140, 60–77. [Google Scholar] [CrossRef]
- Wu, X.D.; Wen, J.G.; Xiao, Q.; Li, X.; Liu, Q.; Tang, Y.; Li, X.W. Advances in validation methods for remote sensing products of land surface parameters. J. Remote Sens. 2015, 19, 76–92. [Google Scholar]
- Román, M.O.; Schaaf, C.B.; Lewis, P.; Gao, F.; Anderson, G.P.; Privette, J.L.; Barnsley, M. Assessing the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes. Remote Sens. Environ. 2010, 114, 738–760. [Google Scholar] [CrossRef]
- Wu, X.; Xiao, Q.; Wen, J.; Liu, Q.; Peng, J.; Li, X. Advances in uncertainty analysis for the validation of remote sensing products: Take leaf area index for example. J. Remote Sens. 2014, 18, 1011–1023. [Google Scholar]
- Huang, G.; Li, X.; Huang, C.; Liu, S.; Ma, Y.; Chen, H. Representativeness errors of point-scale ground-based solar radiation measurements in the validation of remote sensing products. Remote Sens. Environ. 2016, 181, 198–206. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Wen, J. Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Wright, P.; Bergin, M.; Dibb, J.; Lefer, B.; Domine, F.; Carman, T.; Wang, Z. Comparing MODIS daily snow albedo to spectral albedo field measurements in Central Greenland. Remote Sens. Environ. 2014, 140, 118–129. [Google Scholar] [CrossRef]
- Peng, J.J.; Liu, Q.; Wen, J.G.; Liu, Q.H.; Tang, Y.; Wang, L.Z.; Dou, B.C.; You, D.Q.; Sun, C.K.; Zhao, X.J.; et al. Multi-scale validation strategy for satellite albedo products and its uncertainty analysis. Sci. China Earth Sci. 2014, 58, 573–588. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Lewis, P. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens. 2002, 38, 977–998. [Google Scholar] [CrossRef]
- Wanner, W.; Strahler, A.H.; Hu, B.; Lewis, P.; Muller, J.P.; Li, X.; Barnsley, M.J. Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and algorithm. J. Geophys. Res. Atmos. 1997, 102, 17143–17161. [Google Scholar] [CrossRef] [Green Version]
- Campagnolo, M.L.; Sun, Q.; Liu, Y.; Schaaf, C.; Wang, Z.; Román, M.O. Estimating the effective spatial resolution of the operational brdf, albedo, and nadir reflectance products from MODIS and VIIRS. Remote Sens. Environ. 2016, 175, 52–64. [Google Scholar] [CrossRef]
- Sütterlin, M.; Schaaf, C.B.; Stöckli, R.; Sun, Q.; Hüsler, F.; Neuhaus, C.; Wunderle, S. Albedo and reflectance anisotropy retrieval from AVHRR operated onboard NOAA and MetOp satellites: Algorithm performance and accuracy assessment for Europe. Remote Sens. Environ. 2015, 168, 163–176. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, X.; Lin, S.; Liu, Q.; Liu, S. Validation of GLASS albedo product through Landsat TM data and ground measurements. J. Remote Sens. 2014, 18, 547–558. [Google Scholar]
- Liu, N.F.; Liu, Q.; Wang, L.Z.; Liang, S.L.; Wen, J.G.; Qu, Y.; Liu, S.H. A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data. Hydrol. Earth Syst. Sci. 2013, 17, 2121–2129. [Google Scholar] [CrossRef] [Green Version]
- Noreus, J.P.; Nyborg, M.R.; Hayling, K.L. The gravity anomaly field in the Gulf of Bothnia spatially characterized from satellite altimetry and in situ measurements. J. Appl. Geophys. 1997, 37, 67–84. [Google Scholar] [CrossRef]
- Xu, B.; Li, J.; Liu, Q.; Huete, A.R.; Yu, Q.; Zeng, Y. Evaluating spatial representativeness of station observations for remotely sensed leaf area index products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3267–3282. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Q.; Wang, L.; Liu, Q.; Fan, W.; Lu, M. Characterizing the pixel footprint of satellite albedo products derived from MODIS reflectance in the Heihe River Basin, China. Remote Sens. 2015, 7, 6886–6907. [Google Scholar] [CrossRef]
- Stroeve, J.; Box, J.E.; Wang, Z.; Schaaf, C.; Barrett, A. Re-evaluation of MODIS MCD43 Greenland albedo accuracy and trends. Remote Sens. Environ. 2013, 138, 199–214. [Google Scholar] [CrossRef]
- Wang, K.; Liang, S.; Schaaf, C.L.; Strahler, A.H. Evaluation of Moderate Resolution Imaging Spectroradiometer land surface visible and shortwave albedo products at FLUXNET sites. J. Geophys. Res. Atmos. 2010, 115, D17107. [Google Scholar] [CrossRef]
- Ranson, K.J.; Irons, J.R.; Daughtry, C.S.T. Surface albedo from bidirectional reflectance. Remote Sens. Environ. 1991, 35, 201–211. [Google Scholar] [CrossRef]
- Wu, X.; Wen, J.; Xiao, Q.; You, D.; Liu, Q.; Lin, X. Forward a spatio-temporal trend surface for long-term ground-measured albedo upscaling over heterogeneous land surface. Int. J. Digit. Earth 2017, 6, 1–15. [Google Scholar] [CrossRef]
Scope | Site | Latitude (°) | Longitude (°) | Elevation (m) | Land Cover | Tower Height (m) | Footprint (m) |
---|---|---|---|---|---|---|---|
Upstream | Arousuper | 38.0473 | 100.4643 | 3033 | alpine grassland | 5 | 43.5 |
Arousunny | 38.0898 | 100.5204 | 3529 | alpine grassland | 6 | 52.2 | |
Aroucloudy | 37.9841 | 100.4108 | 3536 | alpine grassland | 6 | 52.2 | |
Dashalong | 38.8399 | 98.9406 | 3739 | swamp meadow | 6 | 52.2 | |
Ebao | 37.9492 | 100.9151 | 3294 | alpine grassland | 6 | 52.2 | |
Huangzangsi | 38.2254 | 100.1918 | 3529 | wheat field | 6 | 52.2 | |
Huangcaogou | 38.0033 | 100.7312 | 3137 | alpine grassland | 6 | 52.2 | |
Jingyangling | 37.8384 | 101.116 | 3750 | alpine meadows | 6 | 52.2 | |
Midstream | Damansuper | 38.8555 | 100.3722 | 1556 | corn field | 12 | 104.4 |
Bajitan | 38.915 | 100.3042 | 1562 | gobi | 6 | 52.2 | |
Shenshawo | 38.7892 | 100.4933 | 1594 | desert | 6 | 52.2 | |
Zhangye | 38.9751 | 100.4464 | 1460 | wetland | 6 | 52.2 | |
Huazhaizi | 38.7652 | 100.3186 | 1731 | desert | 2.5 | 21.75 |
Product | Sensor | Spatial Resolution | Temporal Resolution | Algorithm | BRDF Synthesis Period | Temporal Range |
---|---|---|---|---|---|---|
MCD43A3 (V006) | MODIS | 500 m | daily | BRDF modeling | 16-day | 2013–2014 |
GLASS | MODIS | 1 km | 8-day | Direct estimation | 1-day | 2013 |
MuSyQ | MODIS, VIIRS, AVHRR, MERIS/FY3 | 1 km | 5-day | BRDF modeling | 10-day | 2013–2014 |
Site | 500 m | 1 km | ||||
---|---|---|---|---|---|---|
Nugget | Partial Sill | Range (m) | Nugget | Partial Sill | Range (m) | |
Arousuper | 5.208 × 10^-07 | 5.927 × 10^-06 | 212.6 | 0.000 | 1.229 × 10^-05 | 686.4 |
Dashalong | 0.000 | 4.877 × 10^-06 | 313.0 | 0.000 | 1.305 × 10^-05 | 225.2 |
Shenshawo | 1.704 × 10^-06 | 2.330 × 10^-05 | 233.8 | 0.000 | 4.379 × 10^-05 | 190.8 |
Huangcaogou | 0.000 | 1.184 × 10^-05 | 188.8 | 0.000 | 7.489 × 10^-05 | 409.0 |
Huazhaizi | 0.000 | 4.885 × 10^-05 | 237.9 | 0.000 | 7.843 × 10^-05 | 567.7 |
Zhangye | 3.141 × 10^-06 | 1.150 × 10^-04 | 172.1 | 0.000 | 1.834 × 10^-04 | 719.8 |
Bajitan | 1.262 × 10^-06 | 3.750 × 10^-05 | 184.1 | 0.000 | 2.178 × 10^-04 | 1918.4 |
Damansuper | 2.814 × 10^-06 | 5.520 × 10^-05 | 165.1 | 0.000 | 2.795 × 10^-04 | 951.5 |
Arousunny | 8.159 × 10^-07 | 1.179 × 10^-04 | 237.0 | 1.191 × 10^-05 | 3.804 × 10^-04 | 374.1 |
Aroucloudy | 2.907 × 10^-05 | 2.768 × 10^-03 | 279.3 | 0.000 | 5.900 × 10^-04 | 311.3 |
Ebao | 0.000 | 4.996 × 10^-05 | 396.1 | 1.750 × 10^-05 | 8.612 × 10^-04 | 318.4 |
Jingyangling | 0.000 | 1.010 × 10^-04 | 180.4 | 0.000 | 6.450 × 10^-03 | 628.3 |
Huangzangsi | 3.442 × 10^-06 | 9.062 × 10^-05 | 216.6 | 0.000 | 8.230 × 10^-02 | 183,050.0 |
Sites | Best Estimator | Good Estimator | Fair Estimator | Bad Estimator |
---|---|---|---|---|
Representativeness Error (%) | <5 | 5–10 | 10–15 | >15 |
Shenshawo | 96/84 | 4/8 | 0/4 | 0/4 |
Bajitan | 88/84 | 12/8 | 0/8 | 0/0 |
Huangcaogou | 83.3/87.5 | 16.7/12.5 | 0/0 | 0/0 |
Huazhaizi | 88/88 | 8/8 | 4/4 | 0/0 |
Dashalong | 100/58.3 | 0/33.3 | 0/8.3 | 0/0 |
Ebao | 75/58.3 | 20.8/25 | 4.2/16.7 | 0/0 |
Arousuper | 83.3/54.2 | 16.7/33.3 | 0/8.3 | 0/4.2 |
Damansuper | 60/60 | 8/16 | 24/16 | 8/8 |
Zhangye | 40/20 | 32/24 | 16/28 | 12/28 |
Arousunny | 70.8/29.2 | 8.3/16.7 | 20.8/20.8 | 0/33.3 |
Jingyangling | 47.8/30.4 | 8.7/26.1 | 13/21.7 | 30.4/21.7 |
Aroucloudy | 8.3/12.5 | 8.3/20.8 | 20.8/25 | 62.5/41.7 |
Huangzangsi | 32/16 | 4/20 | 16/0 | 48/64 |
Cases | Magnitude (RMSE/Bias) | Consistency (R2) |
---|---|---|
Observation ≥ 7 | MuSyQ ≈ MCD43A3 > GLASS | MuSyQ > MCD43A3 |
3 ≤ Observation < 7 | MCD43A3 ≈ MuSyQ > GLASS | MCD43A3 > MuSyQ |
Snowfall | MCD43A3 ≈ MuSyQ | MuSyQ > MCD43A3 |
Snow-free | MuSyQ ≈ MCD43A > GLASS | MuSyQ > MCD43A3 ≈ GLASS |
Overall | MCD43A3 ≈ MuSyQ > GLASS | MCD43A3 ≈ MuSyQ |
Subtle seasonal variation | MuSyQ > MCD43A3 > GLASS | MuSyQ > MCD43A3 ≈ GLASS |
Obvious seasonal variation | MuSyQ ≈ GLASS > MCD43A3 | MuSyQ > MCD43A3 ≈ GLASS |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Wen, J.; Xiao, Q.; You, D.; Dou, B.; Lin, X.; Hueni, A. Accuracy Assessment on MODIS (V006), GLASS and MuSyQ Land-Surface Albedo Products: A Case Study in the Heihe River Basin, China. Remote Sens. 2018, 10, 2045. https://doi.org/10.3390/rs10122045
Wu X, Wen J, Xiao Q, You D, Dou B, Lin X, Hueni A. Accuracy Assessment on MODIS (V006), GLASS and MuSyQ Land-Surface Albedo Products: A Case Study in the Heihe River Basin, China. Remote Sensing. 2018; 10(12):2045. https://doi.org/10.3390/rs10122045
Chicago/Turabian StyleWu, Xiaodan, Jianguang Wen, Qing Xiao, Dongqin You, Baocheng Dou, Xinwen Lin, and Andreas Hueni. 2018. "Accuracy Assessment on MODIS (V006), GLASS and MuSyQ Land-Surface Albedo Products: A Case Study in the Heihe River Basin, China" Remote Sensing 10, no. 12: 2045. https://doi.org/10.3390/rs10122045
APA StyleWu, X., Wen, J., Xiao, Q., You, D., Dou, B., Lin, X., & Hueni, A. (2018). Accuracy Assessment on MODIS (V006), GLASS and MuSyQ Land-Surface Albedo Products: A Case Study in the Heihe River Basin, China. Remote Sensing, 10(12), 2045. https://doi.org/10.3390/rs10122045