Permafrost Distribution along the Qinghai-Tibet Engineering Corridor, China Using High-Resolution Statistical Mapping and Modeling Integrated with Remote Sensing and GIS
Abstract
:1. Introduction
2. Study Area
3. Methods and Materials
3.1. Field Data
3.2. Statistical Model and Validation
3.3. Remote Sensing-Independent Variables
3.3.1. Ground Surface Type
3.3.2. Mean Annual Air Temperature (MAAT)
3.3.3. Solar Radiation (PISR)
4. Results
4.1. Remote Sensing Inputs
4.2. Statistical Permafrost Model
4.3. Spatial Permafrost Distribution
5. Discussion
5.1. Predictor Variables for the Model Inputs
5.2. Permafrost Model Performance
5.3. Comparison with Previous Studies
5.4. Permafrost Temperature and Effects of Climate Change
6. Conclusions
- The results of the land cover type and MAAT model emphasized the importance of the GF-1 satellite image to derive ground surface parameters, and the appropriateness of the MODIS-LST product to determine temperature distribution with scarce and heterogeneous temperature records from weather stations. Moreover, the results of the MAAT model can provide valuable data to study other climatically driven earth surface features widely and relatively easily on the QTP.
- The approach used here has given a valid picture of permafrost distribution at a local scale. The map accuracies were assessed using independent field observations. The model results suggested that permafrost was discontinuous and occupied about 60.3% of the QTEC, excluding rivers, lakes, and glacier surfaces. Lower limits of permafrost occurrence (p > 70%) increased from 4350 m a.s.l. in the north to 4700 m a.s.l. in the south.
- Finally, the findings of this research contributed mainly to improving the general knowledge about permafrost distribution in the QTEC, providing valuable information to government for infrastructure planning, such as pipeline or railroad routes. The high-resolution vegetation map will also serve as a baseline map to identify areas of permafrost degradation and ecosystem changing under the background of climate warming. Additional research, in particular, taking into account ground-truthing and local conditions, is necessary in order to refine the present model and evaluate possible permafrost change.
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vaughan, D.G.; Comiso, J.C.; Allison, I.; Carrasco, J.; Kaser, G.; Kwok, R.; Mote, P.; Murray, T.; Paul, F.; Ren, J. Observations: Cryosphere. Climate change 2013, the physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 317–382. [Google Scholar]
- Kurylyk, B.L.; MacQuarrie, K.T.; McKenzie, J.M. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools. Earth-Sci. Rev. 2014, 138, 313–334. [Google Scholar] [CrossRef]
- Harris, C.; Arenson, L.U.; Christiansen, H.H.; Etzelmüller, B.; Frauenfelder, R.; Gruber, S.; Haeberli, W.; Hauck, C.; Hoelzle, M.; Humlum, O. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Sci. Rev. 2009, 92, 117–171. [Google Scholar] [CrossRef] [Green Version]
- Haeberli, W. Mountain permafrost-research frontiers and a special long-term challenge. Cold Reg. Sci. Technol. 2013, 96, 71–76. [Google Scholar] [CrossRef]
- Li, R.; Zhao, L.; Ding, Y.; Wu, T.; Xiao, Y.; Du, E.; Liu, G.; Qiao, Y. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region. Chin. Sci. Bull. 2012, 1–8. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, T. Recent permafrost warming on the Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, T. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, T.; Liu, Y. Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010. Cryosphere 2012, 6, 607. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Wu, T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef]
- Jin, H.; Wei, Z.; Wang, S.; Yu, Q.; Lü, L.; Wu, Q.; Ji, Y. Assessment of frozen-ground conditions for engineering geology along the Qinghai-Tibet highway and railway, China. Eng. Geol. 2008, 101, 96–109. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, L.; Li, R.; Wang, Q.; Xie, C.; Pang, Q. Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau. Int. J. Climatol. 2013, 33, 920–930. [Google Scholar] [CrossRef]
- Yang, M.; Nelson, F.E.; Shiklomanov, N.I.; Guo, D.; Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Sci. Rev. 2010, 103, 31–44. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, F.; Xu, Z.; Xu, J.; Wang, P. Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau. Permafr. Periglac. Process. 2010, 21, 315–324. [Google Scholar] [CrossRef]
- Wei, M.; Fujun, N.; Satoshi, A.; Dewu, J. Slope instability phenomena in permafrost regions of Qinghai-Tibet Plateau, China. Landslides 2006, 3, 260–264. [Google Scholar] [CrossRef]
- Niu, F.; Lin, Z.; Liu, H.; Lu, J. Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau. Geomorphology 2011, 132, 222–233. [Google Scholar] [CrossRef]
- Niu, F.; Luo, J.; Lin, Z.; Ma, W.; Lu, J. Development and thermal regime of a thaw slump in the Qinghai-Tibet plateau. Cold Reg. Sci. Technol. 2012, 83, 131–138. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G.; Zhang, T.; Wu, Q.; Jin, H.; Jin, R. Distribution of Permafrost in China: An Overview of Existing Permafrost Maps. Permafr. Periglac. Process. 2012, 23, 322–333. [Google Scholar] [CrossRef]
- Duguay, C.R.; Zhang, T.; Leverington, D.W.; Romanovsky, V.E. Satellite remote sensing of permafrost and seasonally frozen ground. Remote Sens. North. Hydrol. Meas. Environ. Chang. 2005, 163, 91–118. [Google Scholar] [CrossRef]
- Smith, M.W. Microclimatic influences on ground temperatures and permafrost distribution, Mackenzie Delta, Northwest Territories. Can. J. Earth Sci. 1975, 12, 1421–1438. [Google Scholar] [CrossRef]
- Cheng, G. Influences of local factors on permafrost occurrence and their implications for Qinghai-Xizang Railway design. Sci. China Earth Sci. 2004, 47, 704–709. [Google Scholar] [CrossRef]
- Niu, F.; Liu, M.; Cheng, G.; Lin, Z.; Luo, J.; Yin, G. Long-term thermal regimes of the Qinghai-Tibet Railway embankments in plateau permafrost regions. Sci. China Earth Sci. 2015, 58, 1669–1676. [Google Scholar] [CrossRef]
- Niu, F.; Cheng, G.; Niu, Y.; Zhang, M.; Luo, J.; Lin, Z. A naturally-occurring ‘cold earth’ spot in Northern China. Sci. Rep. 2016, 6, 34184. [Google Scholar] [CrossRef] [PubMed]
- Gruber, S.; Hoelzle, M. Statistical modelling of mountain permafrost distribution: Local calibration and incorporation of remotely sensed data. Permafr. Periglac. Process. 2001, 12, 69–77. [Google Scholar] [CrossRef]
- Lambiel, C.; Reynard, E. Regional modelling of present, past and future potential distribution of discontinuous permafrost based on a rock glacier inventory in the Bagnes-Hérémence area (Western Swiss Alps). Nor. Geogr. Tidsskr. 2001, 55, 219–223. [Google Scholar] [CrossRef]
- Boeckli, L.; Brenning, A.; Gruber, S.; Noetzli, J. Permafrost distribution in the European Alps: Calculation and evaluation of an index map and summary statistics. Cryosphere 2012, 6, 807. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, J.; Wang, X.; Chen, W.; Sladen, W.; Dyke, L.; Dredge, L.; Poitevin, J.; McLennan, D.; Stewart, H.; et al. Modelling and mapping permafrost at high spatial resolution in Wapusk National Park, Hudson Bay Lowlands. Can. J. Earth Sci. 2012, 49, 925–937. [Google Scholar] [CrossRef]
- Jafarov, E.E.; Marchenko, S.S.; Romanovsky, V. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset. Cryosphere 2012, 6, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Riseborough, D.; Shiklomanov, N.; Etzelmüller, B.; Gruber, S.; Marchenko, S. Recent advances in permafrost modelling. Permafr. Periglac. Process. 2008, 19, 137–156. [Google Scholar] [CrossRef]
- Janke, J.R. Modeling past and future alpine permafrost distribution in the Colorado Front Range. Earth Surf. Proc. Land. 2005, 30, 1495–1508. [Google Scholar] [CrossRef]
- Panda, S.; Prakash, A.; Jorgenson, M.; Solie, D. Near-surface permafrost distribution mapping using logistic regression and remote sensing in Interior Alaska. Gisci. Remote Sens. 2012, 49, 346–363. [Google Scholar] [CrossRef]
- Sattler, K.; Anderson, B.; Mackintosh, A.; Norton, K.P.; De Roiste, M. Estimating Permafrost Distribution in the Maritime Southern Alps, New Zealand, Based on Climatic Conditions at Rock Glacier Sites. Front. Earth Sci. 2016, 4. [Google Scholar] [CrossRef]
- Azócar, G.F.; Brenning, A.; Bodin, X. Permafrost distribution modelling in the semi-arid Chilean Andes. Cryosphere 2017, 11, 877. [Google Scholar] [CrossRef]
- Zhang, T.; Barry, R.G.; Armstrong, R.L. Application of satellite remote sensing techniques to frozen ground studies. Polar Geogr. 2004, 28, 163–196. [Google Scholar] [CrossRef]
- Luo, J.; Niu, F.; Lin, Z.; Liu, M.; Yin, G. Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai-Tibet Plateau, China. Sci. Bull. 2015, 60, 556–564. [Google Scholar] [CrossRef]
- Ou, C.; LaRocque, A.; Leblon, B.; Zhang, Y.; Webster, K.; McLaughlin, J. Modelling and mapping permafrost at high spatial resolution using Landsat and Radarsat-2 images in Northern Ontario, Canada: Part 2—Regional mapping. Int. J. Remote Sens. 2016, 37, 2751–2779. [Google Scholar] [CrossRef]
- Panda, S.K.; Prakash, A.; Solie, D.N.; Romanovsky, V.E.; Jorgenson, M.T. Remote sensing and field-based mapping of permafrost distribution along the Alaska Highway corridor, interior Alaska. Permafr. Periglac. Process. 2010, 21, 271–281. [Google Scholar] [CrossRef]
- Morrissey, L.A.; Strong, L.; Card, D. Mapping permafrost in the boreal forest with thematic mapper satellite data. Photogramm. Eng. Remote Sens. 1986, 52, 1513–1520. [Google Scholar]
- Nicolsky, D.J.; Romanovsky, V.; Panda, S.; Marchenko, S.; Muskett, R. Applicability of the ecosystem type approach to model permafrost dynamics across the Alaska North Slope. J. Geophys. Res. Earth Surf. 2017, 122, 50–75. [Google Scholar] [CrossRef]
- Etzelmüller, B.; Heggem, E.S.; Sharkhuu, N.; Frauenfelder, R.; Kääb, A.; Goulden, C. Mountain permafrost distribution modelling using a multi–criteria approach in the Hövsgöl area, northern Mongolia. Permafr. Periglac. Process. 2006, 17, 91–104. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, T.; Liu, Y. Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Glob. Planet Chang. 2010, 72, 32–38. [Google Scholar] [CrossRef]
- Li, S.; Cheng, G. Map of Frozen Ground on Qinghai-Xizang Plateau; Gansu Culture Press: Lanzhou, China, 1996; Available online: http://westdc.westgis.ac.cn (accessed on 19 September 2016).
- Schröder, B. ROC Plotting and AUC Calculation Transferability Test; Potsdam University: Potsdam, Germany, 2006; Available online: http//lec.wzw.tum.de/index.php?id=67&L=1 (accessed on 22 August 2017).
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Jin, R. In Estimation of the mean annual surface temperature and surface frost number using the MODIS land surface temperature products for mapping permafrost in China. In Proceedings of the 10th International Conference on Permafrost, Salekhard, Yamal-nenets Autonomous District, Russia, 25–29 June 2012; pp. 25–29. [Google Scholar]
- Liu, Y.; Hiyama, T.; Yamaguchi, Y. Scaling of land surface temperature using satellite data: A case examination on ASTER and MODIS products over a heterogeneous terrain area. Remote Sens. Environ. 2006, 105, 115–128. [Google Scholar] [CrossRef]
- Zou, D.; Zhao, L.; Wu, T.; Wu, X.; Pang, Q.; Wang, Z. Modeling ground surface temperature by means of remote sensing data in high-altitude areas: Test in the central Tibetan Plateau with application of moderate-resolution imaging spectroradiometer Terra/Aqua land surface temperature and groundbased infrared radiometer. J. Appl. Remote Sens. 2014, 8. [Google Scholar] [CrossRef]
- Hachem, S.; Duguay, C.; Allard, M. Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. Cryosphere 2012, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- Ran, Y.; Li, X.; Jin, R.; Guo, J. Remote sensing of the mean annual surface temperature and surface frost number for mapping permafrost in China. Arct. Antarct. Alp. Res. 2015, 47, 255–265. [Google Scholar] [CrossRef]
- Zou, D.; Zhao, L.; Wu, T.; Wu, X.; Pang, Q.; Qiao, Y.; Wang, Z. Assessing the applicability of MODIS land surface temperature products in continuous permafrost regions in the central Tibetan Plateau. J. Glac. Geocry 2015, 37, 308–317. (In Chinese) [Google Scholar]
- Jorgenson, T.; Harden, J.; Kanevskiy, M.; O’Donnell, J.; Wickland, K.; Ewing, S.; Manies, K.; Zhuang, Q.; Shur, Y.; Striegl, R.; Koch, J. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environ. Res. Lett. 2013, 8, 035017. [Google Scholar] [CrossRef]
- Li, Z.; Burn, C.R.; Niu, F.; Luo, J.; Liu, M.; Yin, G. The Thermal Regime, including a Reversed Thermal Offset, of Arid Permafrost Sites with Variations in Vegetation Cover Density, Wudaoliang Basin, Qinghai-Tibet Plateau. Permafr. Periglac. Process. 2015, 26, 142–159. [Google Scholar] [CrossRef]
- Hoelzle, M. Permafrost occurrence from BTS measurements and climatic parameters in the eastern Swiss Alps. Permafr. Periglac. Process. 1992, 3, 143–147. [Google Scholar] [CrossRef]
- Etzelmüller, B.; Hoelzle, M.; Ødegård, R.S.; Berthling, I.; Sollid, J.L. Terrain parameters and remote sensing data in the analysis of permafrost distribution and periglacial processes: Principle and examples from southern Norway. Permafr. Periglac. Process. 2001, 12, 79–92. [Google Scholar] [CrossRef]
- Pastick, N.J.; Jorgenson, M.T.; Wylie, B.K.; Nield, S.J.; Johnson, K.D.; Finley, A.O. Distribution of near-surface permafrost in Alaska: Estimates of present and future conditions. Remote Sens. Environ. 2015, 168, 301–315. [Google Scholar] [CrossRef]
- Minder, J.R.; Mote, P.W.; Lundquist, J.D. Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Allen, S.; Owens, I.; Huggel, C. In A first estimate of mountain permafrost distribution in the Mount Cook region of New Zealand’s Southern Alps. In Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, 23–26 June 2008; pp. 37–42. [Google Scholar]
- Xie, Y.; Zeng, Q. In Climatic conditions of permafrost occurrence on the Qinghai-Tibet Plateau. In Proceedings of the 2nd National Conference on Permafrost, Institute of Glacier and Permafrost, Chinese Academy of Science, Lanzhou, China, 2–6 July 1983. [Google Scholar]
- Barry, R.G. Mountain Weather and Climate; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Anisimov, O.A.; Nelson, F.E. Permafrost distribution in the Northern Hemisphere under scenarios of climatic change. Glob. Planet Chang. 1996, 14, 59–72. [Google Scholar] [CrossRef]
- Hoelzle, M.; Mittaz, C.; Etzelmüller, B.; Haeberli, W. Surface energy fluxes and distribution models of permafrost in European mountain areas: An overview of current developments. Permafr. Periglac. Process. 2001, 12, 53–68. [Google Scholar] [CrossRef]
- Yin, G.; Niu, F.; Lin, Z.; Luo, J.; Liu, M. Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau, China. Sci. Total Environ. 2017, 581, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, N.; Li, S. Map of the Glaciers, Frozen Ground and Desert in China, 1:4000000; Chinese Map Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Nan, Z.; Li, S.; Liu, Y. Mean annual ground temperature distribution on the Tibetan Plateau: Permafrost distribution mapping and further application. J. Glaciol. Geocryol. 2002, 24, 142–148. (In Chinese) [Google Scholar]
- Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012, 6, 221. [Google Scholar] [CrossRef] [Green Version]
- Lewkowicz, A.G.; Ednie, M. Probability mapping of mountain permafrost using the BTS method, Wolf Creek, Yukon Territory, Canada. Permafr. Periglac. Process. 2004, 15, 67–80. [Google Scholar] [CrossRef]
- Boeckli, L.; Brenning, A.; Gruber, S.; Noetzli, J. A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges. Cryosphere 2012, 6, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Chang, X.; Wang, S. Evolution of permafrost on the Qinghai-Xizang (Tibet) Plateau since the end of the late Pleistocene. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef]
- Haeberli, W.; Guodong, C.; Gorbunov, A.; Harris, S. Mountain permafrost and climatic change. Permafr. Periglac. Process. 1993, 4, 165–174. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, Q.; Marchenko, S.; Sharkhuu, N. Thermal state of permafrost and active layer in Central Asia during the International Polar Year. Permafr. Periglac. Process. 2010, 21, 198–207. [Google Scholar] [CrossRef]
- Niu, F.; Luo, J.; Lin, Z.; Fang, J.; Liu, M. Thaw-induced slope failures and stability analyses in permafrost regions of the Qinghai-Tibet Plateau, China. Landslides 2016, 13, 55–65. [Google Scholar] [CrossRef]
Vegetation Type | Near-Surface (0–50 cm) Soil Type | Permafrost | Active Layer Thickness (m) | Permafrost Temperature (°C) | |
---|---|---|---|---|---|
Present/% | Absent | ||||
Alpine meadow | Sandy loam | 85/82.5 | 18 | 0.9~5.3 | −3.9~0 |
Degrading alpine meadow | Sandy loam | 44/77.2 | 13 | 1.1~4.1 | −3.6~0 |
Alpine steppe | Sand with gravel | 33/91.7 | 3 | 1.0~6.5 | −2.9~0 |
Sparse grassland | Sand with gravel | 37/46.8 | 42 | 0.8~7.5 | −2.6~0 |
Bare ground | Stone and gravel | 37/53.6 | 32 | 1.2~6.2 | −3.1~0 |
Weather Station Name | Location | Averaged MAAT | Record Years | ||
---|---|---|---|---|---|
Longitude (°N) | Latitude (°E) | Elevation (m) | |||
K 966 * | 94.04 | 35.72 | 4587 | −4.4 | 2014−2016 |
K 980 | 94.05 | 35.61 | 4736 | −5.8 | 2014−2016 |
Wudaoliang | 93.08 | 35.19 | 4612 | −4.5 | 2012−2016 |
K 3035 | 92.98 | 34.99 | 4593 | −3.5 | 2014−2016 |
Beiluhe | 93.93 | 34.82 | 4648 | −3.4 | 2005−2016 |
Tuotuohe | 92.43 | 34.22 | 4533 | −4.0 | 2005−2016 |
Anduo | 91.72 | 32.40 | 4780 | −3.3 | 2014−2016 |
Class ID | Object | Definition | NDVI | Texture | Shape | Image Colour |
---|---|---|---|---|---|---|
1 | Alpine meadow | Vegetation cover >0.7, dominated by Kobrecia parva | 0.4–1.0 | Uniform and clear | Continuous distribution and boundary | Red, light red, and pink |
2 | Degrading alpine meadow | Vegetation cover between 0.3 and 0.8, dominated by Kobrecia parva and Stipa purpurea. | 0.2–0.6 | Fine and smooth | Irregularity | Red, light red, and pink |
3 | Alpine steppe | Sand and gravel land covered by vegetation (cover <0.25), such as Carex moocroftii | 0.15–0.3 | Fine | Irregularity | Red, light red, and pink, uniform |
4 | Sparse grassland | Bare land with very spares vegetation (cover b0.2), such as Stipa purpurea. | 0.15–0.25 | clear | Irregularity | Pink and light red |
5 | Bare ground | Exposed lands without vegetation cover, such as bedrock outcrops with sand and gravel, roads, and work-yards. | 0–0.15 | Fine and uniform | Irregularity | off white |
6 | Lake | Deep water, including thermokarst lakes | <0 | Fine, clear, and uniform | Obvious geometrical characteristic, such as oval | Blue, dark blue, and light blue |
7 | River | Shallow water including streams | <0 | Fine and clear | banded | Blue, dark blue, and light blue |
8 | Bench land | Fluvial outwash | 0–0.1 | Fine and uniform | zonal or sheet | off white |
9 | Snow/glacier | Mainly distributed on the high mountain peak. | <0 | Fine and homogeneous | Distributed along contour line | White and uniform |
Class ID | Class Name | Field Site Identification Accuracy (%) | |
---|---|---|---|
Number of Sites | User’s Accuracy | ||
1 | Alpine meadow | 103 | 92.1 |
2 | Degrading alpine meadow | 57 | 88.7 |
3 | Alpine steppe | 36 | 85.5 |
4 | Sparse grassland | 79 | 91.3 |
5 | Bare ground | 69 | 87.2 |
6 | Lake | 20 | 100 |
7 | River | 10 | 98 |
8 | Bench land | 16 | 91 |
9 | Snow/glacier | 10 | 100 |
Average user’s accuracy | 92.6 |
REGRESSION RESULTS | ||||
---|---|---|---|---|
Variables | Coefficients | Bias | SE | p |
Vegetation | −1.058 | 0.041 | 1.14 | 0.000 |
PISR | −1.188 | −0.835 | 5.79 | 0.000 |
MAAT | −0.486 | −0.072 | 0.313 | 0.000 |
Constant | 3.085 | 0.825 | 4.943 | 0.000 |
VALIDATION | ||||
Run | Training | Validation | ||
Highest * | 83.0% | 87.7% | ||
Average accuracy ** | 85.4% | 83.5% |
Permafrost Probability (%) | Area * (km2) | Percent (%) |
---|---|---|
0–20 | 402 | 1.8 |
20–50 | 2260 | 10.3 |
50–70 | 6040 | 27.6 |
70–90 | 10,204 | 46.6 |
90–100 | 2992 | 13.7 |
Total | 21,899 | 100 |
Observed and Other Studies | Predicted Permafrost Existence | Consistency (%) | |
---|---|---|---|
Yes | No | ||
Xidatan (n * = 13) | 8 | 2 | 77.0 |
Beiluhe (n = 20) | 14 | 1 | 75.0 |
Anduo (n = 3) | 1 | 1 | 67.0 |
Overall (n = 36) | 23 | 4 | 75.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, F.; Yin, G.; Luo, J.; Lin, Z.; Liu, M. Permafrost Distribution along the Qinghai-Tibet Engineering Corridor, China Using High-Resolution Statistical Mapping and Modeling Integrated with Remote Sensing and GIS. Remote Sens. 2018, 10, 215. https://doi.org/10.3390/rs10020215
Niu F, Yin G, Luo J, Lin Z, Liu M. Permafrost Distribution along the Qinghai-Tibet Engineering Corridor, China Using High-Resolution Statistical Mapping and Modeling Integrated with Remote Sensing and GIS. Remote Sensing. 2018; 10(2):215. https://doi.org/10.3390/rs10020215
Chicago/Turabian StyleNiu, Fujun, Guoan Yin, Jing Luo, Zhanju Lin, and Minghao Liu. 2018. "Permafrost Distribution along the Qinghai-Tibet Engineering Corridor, China Using High-Resolution Statistical Mapping and Modeling Integrated with Remote Sensing and GIS" Remote Sensing 10, no. 2: 215. https://doi.org/10.3390/rs10020215
APA StyleNiu, F., Yin, G., Luo, J., Lin, Z., & Liu, M. (2018). Permafrost Distribution along the Qinghai-Tibet Engineering Corridor, China Using High-Resolution Statistical Mapping and Modeling Integrated with Remote Sensing and GIS. Remote Sensing, 10(2), 215. https://doi.org/10.3390/rs10020215