Spatio-Temporal Interpolation of Cloudy SST Fields Using Conditional Analog Data Assimilation
Abstract
:1. Introduction
2. Problem Statement and Related Work
- A dynamical model which states the time evolution of the state. Within a discrete statistical framework, it comes to define the likelihood of the state at a given time given the state at the previous time;
- An observation model which relates the state to the observation, here the cloud-free SST field to the SST observation with missing data.
- the introduction of conditional analog forecasting operators with a view to explicitly accounting for dependencies between the state to be reconstructed and auxiliary variables. In [24,26], the considered analog forecasting operators implicitly assumed the high-resolution component to be independent on the low-resolution component . Both theoretical and statistical studies [34,35] advocate for considering inter-scale dependencies, which relate to the multi-scale characteristics of ocean turbulence [35,36]. We show here that analog strategies are highly flexible to consider such conditioning;
- the introduction of an analog forecasting operator embedding physically-sound priors. We further benefit from the flexibility of analog operators to exploit the synergy between SSH (Sea Surface Height) [35,37] and SST. We investigate locally-linear analog forecasting operators where SSH is used as a complementary regressor;
- the reduction of the computational complexity of AnDA using a clustering-based analog forecasting operator. To improve the scalability of the proposed methodology, we show that we can significantly reduce the computational complexity of the analog data assimilation with no impact on reconstruction performance.
3. Data and Study Area
- OSTIA SST: the OSTIA product delivered daily by the UK Met Office [12] with a × spatial resolution (approx. 5 km). The OSTIA analysis combines satellite data provided by infrared sensors (AVHRR, AATSR, SEVIRI), microwave sensors (AMSR-E, TMI) and in situ data from drifting and moored buoys.
- MW SST: the microwave optimally-interpolated product distributed by REMSS (http://www.remss.com/measurements/sea-surface-temperature/oisst-description/). This product combines daily microwave satellite measurements (TMI, AMSR-E, AMSR2, WindSat sensors) for a × resolution.
4. Method
4.1. Patch-Based Analog Data Assimilation
4.2. Conditional and Physically-Derived Analog Forecasting Operators
- from the selection of analogs based on both variables and U, and not solely based on as in [24,26]. This comes to take into account variable Z in kernel . We typically consider a parameterization of kernel as using kernels applied respectively to fields and Z. Here, we will consider a Gaussian kernel for and a correlation-based kernel for kernel . It may be noted that the considered kernels only exploit the spatial dimensions;
- from the fit of a multivariate linear regression using both and U, or transformed version of U, as regression variables and not solely based on as in [24,26]. For instance, following previous studies [34,38], one may consider the low-resolution field as a potentially-relevant information to improve the forecasting of the high-resolution field .
4.3. Computationally-Efficient Analog Assimilation Strategies
4.4. Experimental Setting
- for the low-resolution component , we consider two options: (i) optimally-interpolated fields projected onto a region-level EOF decomposition with 20 components which resolve spatial scales up to approximately 100 km, (ii) the mean field. The first one is referred to LROI and second one to LRM;
- for the search for analogs, we explored both a simple kernel with no conditioning by the low-resolution component, such that and a kernel with to introduce a conditioning of the analog forecasting operators by the low-resolution gradient magnitude as suggested in [34]. As both settings resulted in very similar interpolation performance (e.g., RMSE of 0.24 for MW SST dataset for both settings), we only report results for the simplest kernel choice (i.e., ) in the subsequent analysis.
- three types of regression variables were evaluated: locally-linear operators using only as regression variables (), using and as regression variables () and using and Z as regression variables (). A fully-developed locally-linear approximation of an advection-diffusion prior would consist in considering both , and Z as regression variables. It resulted in the same performance as considering only and Z (see Table 1) and was not included in the reported results. We might recall that all locally-linear models are fitted within EOF subspaces.
- a classic optimal interpolation with a Gaussian space-time covariance structure: the spatial and time correlation lengths were tuned from cross-validation experiments for the considered SST datasets to respectively 3 days and 100 km. This interpolation is referred to as OI and implemented using [43];
- a DINEOF interpolation [14]: the EOF-based interpolation comes to iteratively project the reconstructed field onto the EOF basis while modifying only SST values for missing data areas. We use 40 EOF components to account for about 95% of the total variance. This interpolation referred to as DINOEF is applied globally onto the entire case-study region.
- a direct application of AnDA over the entire region: this interpolation referred to as G-AnDA exploits the same EOF decomposition as DINEOF and members in the implemented AnDA.
5. Results
5.1. Interpolation Performance
5.2. Computational Complexity and Scalability
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Donlon, C.J.; Minnett, P.J.; Gentemann, C.; Nightingale, T.J.; Barton, I.J.; Ward, B.; Murray, M.J. Toward Improved Validation of Satellite Sea Surface Skin Temperature Measurements for Climate Research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef]
- Merchant, C.J.; Embury, O.; Roberts-Jones, J.; Fiedler, E.; Bulgin, C.; Corlett, G.K.; Good, S.; McLaren, A.; Rayner, N.; Morak-Bozzo, S.; et al. Sea surface temperature datasets for climate applications from Phase 1 of the European Space Agency Climate Change Initiative (SST CCI). Geosci. Data J. 2014, 1, 179–191. [Google Scholar] [CrossRef]
- Hollmann, R.; Merchant, C.J.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; de Leeuw, G.; Forsberg, R.; et al. The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables. Bull. Am. Meteorol. Soc. 2013, 94, 1541–1552. [Google Scholar] [CrossRef] [Green Version]
- Filipponi, F.; Valentini, E.; Taramelli, A. Sea Surface Temperature changes analysis, an Essential Climate Variable for Ecosystem Services provisioning. In Proceedings of the 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, Belgium, 27–29 June 2017; pp. 1–8. [Google Scholar]
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Li, J.; Wang, P.; Han, H.; LI, J.; Zhang, J. On the assimilation of satellite sounder data in cloudy skies in numerical weather prediction models. J. Meteorol. Res. 2016, 30, 169–182. [Google Scholar] [CrossRef]
- Penny, S.G.; Hamill, T.M. Coupled Data Assimilation for Integrated Earth System Analysis and Prediction. Bull. Am. Meteorol. Soc. 2017, 98, ES169–ES172. [Google Scholar] [CrossRef]
- Waters, J.; Lea, D.J.; Martin, M.J.; Mirouze, I.; Weaver, A.; While, J. Implementing a variational data assimilation system in an operational 1/4 degree global ocean model. Q. J. R. Meteorol. Soc. 2015, 141, 333–349. [Google Scholar] [CrossRef]
- Wada, A.; Kunii, M. The role of ocean-atmosphere interaction in Typhoon Sinlaku (2008) using a regional coupled data assimilation system. J. Geophys. Res. Oceans 2017, 122, 3675–3695. [Google Scholar] [CrossRef]
- Guan, L.; Kawamura, H. Merging Satellite Infrared and Microwave SSTs: Methodology and Evaluation of the New SST. J. Oceanogr. 2004, 60, 905–912. [Google Scholar] [CrossRef]
- Wentz, F.; Gentemann, C.; Smith, D.; Chelton, D. Satellite Measurements of Sea Surface Temperature through Clouds. Science 2000, 288, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [Google Scholar] [CrossRef]
- Donlon, C. The Next Generation of Multi-Sensor Merged Sea Surface Temperature Data Sets for Europe. In Remote Sensing of the European Seas; Barale, V., Gade, M., Eds.; Springer: Berlin, Germany, 2008; pp. 177–188. [Google Scholar]
- Ping, B.; Su, F.; Meng, Y. An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data. PLoS ONE 2016, 11, e0155928. [Google Scholar] [CrossRef] [PubMed]
- Beckers, J.M.; Rixen, M. EOF Calculations and Data Filling from Incomplete Oceanographic Datasets. J. Atmos. Ocean. Technol. 2003, 20, 1839–1856. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M. Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation. J. Clim. 1994, 7, 929–948. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Tandeo, P.; Ailliot, P.; Autret, E. Linear Gaussian state-space model with irregular sampling: Application to sea surface temperature. Stoch. Environ. Res. Risk Assess. 2010, 25, 793–804. [Google Scholar] [CrossRef]
- Dash, P.; Ignatov, A.; Martin, M.; Donlon, C.; Brasnett, B.; Reynolds, R.W.; Banzon, V.; Beggs, H.; Cayula, J.F.; Chao, Y. Group for High Resolution Sea Surface Temperature (GHRSST) analysis fields inter-comparisons—Part 2: Near real time web-based level 4 SST Quality Monitor (L4-SQUAM). Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 77, 31–43. [Google Scholar] [CrossRef]
- Evensen, G. Data Assimilation; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Ubelmann, C.; Klein, P.; Fu, L.L. Dynamic Interpolation of Sea Surface Height and Potential Applications for Future High-Resolution Altimetry Mapping. J. Atmos. Ocean. Technol. 2014, 32, 177–184. [Google Scholar] [CrossRef]
- Sirjacobs, D.; Alvera-Azcárate, A.; Barth, A.; Lacroix, G.; Park, Y.; Nechad, B.; Ruddick, K.; Beckers, J.M. Cloud filling of ocean colour and sea surface temperature remote sensing products over the Southern North Sea by the Data Interpolating Empirical Orthogonal Functions methodology. J. Sea Res. 2011, 65, 114–130. [Google Scholar] [CrossRef]
- Zhao, Z.; Giannakis, D. Analog Forecasting with Dynamics-Adapted Kernels. arXiv, 2014; arXiv:10.1175/MWR-D-16-0441.1. [Google Scholar]
- Lguensat, R.; Tandeo, P.; Aillot, P.; Fablet, R. The Analog Data Assimilation. Mon. Weather Rev. 2017. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Fablet, R.; Viet, P.H.; Lguensat, R. Data-Driven Models for the Spatio-Temporal Interpolation of Satellite-Derived SST Fields. IEEE Trans. Comput. Imag. 2017, 3, 647–657. [Google Scholar] [CrossRef]
- Lguensat, R.; Huynh Viet, P.; Sun, M.; Chen, G.; Fenglin, T.; Chapron, B.; Fablet, R. Data-Driven Interpolation of Sea Level Anomalies Using Analog Data Assimilation. Available online: https://hal.archives-ouvertes.fr/hal-01609851 (accessed on 4 October 2017).
- Asch, M.; Bocquet, M.; Nodet, M. Data Assimilation; Fundamentals of Algorithms, Society for Industrial and Applied Mathematics: Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Fairbairn, D.; Pring, S.R.; Lorenc, A.C.; Roulstone, I. A comparison of 4DVar with ensemble data assimilation methods. Q. J. R. Meteorol. Soc. 2014, 140, 281–294. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the CVPR’05 IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 60–65. [Google Scholar]
- Mairal, J.; Bach, F.; Ponce, J. Sparse Modeling for Image and Vision Processing. Found. Trends Comput. Graph. Vis. 2014, 8, 85–283. [Google Scholar] [CrossRef] [Green Version]
- Freeman, W.T.; Liu, C. Markov Random Fields for Super-Resolution. In Advances in Markov Random Fields for Vision and Image Processing; Blake, A., Kohli, P., Rother, C., Eds.; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Criminisi, A.; Perez, P.; Toyama, K. Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 2004, 13, 1200–1212. [Google Scholar] [CrossRef] [PubMed]
- Fablet, R.; Rousseau, F. Joint Interpolation of Multisensor Sea Surface Temperature Fields Using Nonlocal and Statistical Priors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2665–2675. [Google Scholar] [CrossRef]
- Klein, P.; Isern-Fontanet, J.; Lapeyre, G.; Roullet, G.; Danioux, E.; Chapron, B.; Le Gentil, S.; Sasaki, H. Diagnosis of vertical velocities in the upper ocean from high resolution sea surface height. Geophys. Res. Lett. 2009, 36, L12603. [Google Scholar] [CrossRef]
- Bernard, D.; Boffetta, G.; Celani, A.; Falkovich, G. Inverse Turbulent Cascades and Conformally Invariant Curves. Phys. Rev. Lett. 2007, 98, 024501. [Google Scholar] [CrossRef] [PubMed]
- Tandeo, P.; Ailliot, P.; Ruiz, J.; Hannart, A.; Chapron, B.; Cuzol, A.; Monbet, V.; Easton, R.; Fablet, R. Combining Analog Method and Ensemble Data Assimilation: Application to the Lorenz-63 Chaotic System. In Machine Learning and Data Mining Approaches to Climate Science; Lakshmanan, V., Gilleland, E., McGovern, A., Tingley, M., Eds.; Springer: Berline, Germany, 2015; pp. 3–12. [Google Scholar] [Green Version]
- Fablet, R.; Rousseau, F. Missing data super-resolution using non-local and statistical priors. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 676–680. [Google Scholar]
- Iwamura, M.; Sato, T.; Kise, K. What Is the Most Efficient Way to Select Nearest Neighbor Candidates for Fast Approximate Nearest Neighbor Search. In Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013; pp. 3535–3542. [Google Scholar]
- Muja, M.; Lowe, D.G. Scalable Nearest Neighbor Algorithms for High Dimensional Data. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2227–2240. [Google Scholar] [CrossRef] [PubMed]
- Muja, M.; Lowe, D.G. Fast approximate nearest neighbors with automatic algorithm configuration. In Proceedings of the VISAPP’09 International Conference on Computer Vision Theory and Applications, Lisboa, Portugal, 5–8 February 2009; Volume 2, p. 2. [Google Scholar]
- Duda, R.O.; Hart, P.; Stork, D. Pattern Classification; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Escudier, R.; Bouffard, J.; Pascual, A.; Poulain, P.M.; Pujol, M.I. Improvement of coastal and mesoscale observation from space: Application to the northwestern Mediterranean Sea. Geophys. Res. Lett. 2013, 40, 2148–2153. [Google Scholar] [CrossRef]
PB-AnDA | LROI | LRM | |||||
---|---|---|---|---|---|---|---|
dX | dX + Z | dX + | dX | dX + Z | dX + | ||
Zone 1 | 0.35 ± 0.06 | 0.34 ± 0.05 | 0.35 ± 0.06 | 0.34 ± 0.06 | 0.33 ± 0.05 | 0.34 ± 0.06 | |
Zone 2 | 0.33 ± 0.09 | 0.32 ± 0.08 | 0.33 ± 0.09 | 0.32 ± 0.08 | 0.30 ± 0.07 | 0.32 ± 0.08 | |
Zone 3 | 0.18 ± 0.04 | 0.18 ± 0.04 | 0.18 ± 0.04 | 0.19 ± 0.04 | 0.19 ± 0.04 | 0.19 ± 0.04 |
Criterion | RMSE | Correlation | |
---|---|---|---|
OI | 0.48 ± 0.05 | 0.69 ± 0.07 | |
DINEOF | 0.40 ± 0.04 | 0.79 ± 0.04 | |
G-AnDA | 0.38 ± 0.04 | 0.81 ± 0.03 | |
PB-AnDA + LROI + dX | 0.24 ± 0.03 | 0.93 ± 0.02 |
Criterion | RMSE | Correlation | |
---|---|---|---|
OI | 0.42 ± 0.11 | 0.83 ± 0.07 | |
DINEOF | 0.40 ± 0.10 | 0.86 ± 0.06 | |
G-AnDA | 0.38 ± 0.08 | 0.87 ± 0.04 | |
PB-AnDA + LROI + dX | 0.22 ± 0.04 | 0.90 ±0.03 |
PB-AnDA | LROI | LRM | |||||
---|---|---|---|---|---|---|---|
dX | dX + Z | dX + | dX | dX + Z | dX + | ||
Zone 1 | 0.49 ± 0.10 | 0.47 ± 0.10 | 0.49 ± 0.10 | 0.51 ± 0.12 | 0.45 ± 0.09 | 0.51 ± 0.12 | |
Zone 2 | 0.48 ± 0.14 | 0.43 ± 0.12 | 0.48 ± 0.14 | 0.49 ± 0.17 | 0.38 ± 0.10 | 0.48 ± 0.17 | |
Zone 3 | 0.23 ± 0.06 | 0.22 ± 0.06 | 0.23 ± 0.06 | 0.23 ± 0.06 | 0.22 ± 0.06 | 0.23 ± 0.06 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fablet, R.; Huynh Viet, P.; Lguensat, R.; Horrein, P.-H.; Chapron, B. Spatio-Temporal Interpolation of Cloudy SST Fields Using Conditional Analog Data Assimilation. Remote Sens. 2018, 10, 310. https://doi.org/10.3390/rs10020310
Fablet R, Huynh Viet P, Lguensat R, Horrein P-H, Chapron B. Spatio-Temporal Interpolation of Cloudy SST Fields Using Conditional Analog Data Assimilation. Remote Sensing. 2018; 10(2):310. https://doi.org/10.3390/rs10020310
Chicago/Turabian StyleFablet, Ronan, Phi Huynh Viet, Redouane Lguensat, Pierre-Henri Horrein, and Bertrand Chapron. 2018. "Spatio-Temporal Interpolation of Cloudy SST Fields Using Conditional Analog Data Assimilation" Remote Sensing 10, no. 2: 310. https://doi.org/10.3390/rs10020310
APA StyleFablet, R., Huynh Viet, P., Lguensat, R., Horrein, P. -H., & Chapron, B. (2018). Spatio-Temporal Interpolation of Cloudy SST Fields Using Conditional Analog Data Assimilation. Remote Sensing, 10(2), 310. https://doi.org/10.3390/rs10020310