Potential Investigation of Linking PROSAIL with the Ross-Li BRDF Model for Vegetation Characterization
Abstract
:1. Introduction
2. Methods
2.1. The Kernel-Driven BRDF Model and Anisotropy Flat Index (AFX)
2.2. PROSAIL Canopy Reflectance Model
2.3. Data and Experimental Design
3. Results
3.1. A Case Study for a Typical Canopy
3.2. General Consistency in BRFs between the Two Models
3.2.1. Comparison of Directional Reflectance Based on the Fit-RMSE and AFX Statistics
3.2.2. Model Discrepancies regarding Vegetation Parameters
3.3. General Consistency in Albedos between the Two Models
3.4. Consistency in BRFs and Albedos between the Two Models Based on Field Observations
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ACRM | A two-layer Canopy Reflectance Model |
AFX | Anisotropy Flat Index |
ALA | Average Leaf Angle |
ASK | Angular and Spectral Kernel-driven Model |
BRDF | Bidirectional Reflectance Distribution Function |
BRF | Bidirectional Reflectance Factor |
BSA | Black Sky Albedo |
CAR | Cloud Absorption Radiometer |
CI | Clumping Index |
CR | Canopy Reflectance |
DART | Discrete Anisotropic Radiative Transfer |
FIFE | First International Satellite Land Surface Climatology Project Field Experiment |
LAI | Leaf Area Index |
MODIS | Moderate-resolution Imaging Spectroradiometer |
NADI | New Advanced Discrete Model |
NDHD | Normalized Difference between Hotspot and Darkspot |
NIR | Near Infrared |
POLDER | Polarization and Directionality of the Earth’s Reflectances |
PROSAIL | PROSPECT (an optical Properties Spectra) and SAIL (Scattering by Arbitrarily Inclined Leaves) |
RAMI | Radiation Transfer Model Intercomparison |
RMSE | Root Mean Square Error |
RTCLSR | Ross Thick-Chen-Li Sparse-Reciprocal |
RTCLTR | Ross Thick-Chen-Li Transit-Reciprocal |
RTLSR | Ross Thick-Li Sparse-Reciprocal |
SZA | Solar Zenith Angle |
VZA | View Zenith Angle |
WoD | Weight of Determination |
WSA | White Sky Albedo |
References
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+SAIL Models: A Review of Use for Vegetation Characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Feret, J.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.; Ustin, S.L.; Le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the Leaf Optical Properties Model Separating Photosynthetic Pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Verhoef, W.; Jia, L.; Xiao, Q.; Su, Z. Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation Canopies. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1808–1822. [Google Scholar] [CrossRef]
- Widlowski, J.L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.; Fernandes, R.; Gastellu-Etchegorry, J.P.; Gobron, N.; Kuusk, A.; Lavergne, T.; et al. Third Radiation Transfer Model Intercomparison (RAMI) Exercise: Documenting Progress in Canopy Reflectance Models. J. Geophys. Res.-Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Pinty, B.; Widlowski, J.L.; Taberner, M.; Gobron, N.; Verstraete, M.M.; Disney, M.; Gascon, F.; Gastellu, J.P.; Jiang, L.; Kuusk, A.; et al. Radiation Transfer Model Intercomparison (RAMI) Exercise: Results from the Second Phase. J. Geophys. Res.-Atmos. 2004, 109, 523–538. [Google Scholar] [CrossRef]
- Pinty, B.; Gobron, N.; Widlowski, J.L.; Gerstl, S.; Verstraete, M.M.; Antunes, M.; Bacour, C.; Gascon, F.; Gastellu, J.P.; Goel, N.; et al. Radiation Transfer Model Intercomparison (RAMI) Exercise. J. Geophys. Res.-Atmos. 2001, 106, 11937–11956. [Google Scholar] [CrossRef]
- Ren, H.; Liu, R.; Yan, G.; Li, Z.; Qin, Q.; Liu, Q.; Nerry, F. Performance Evaluation of Four Directional Emissivity Analytical Models with Thermal SAIL Model and Airborne Images. Opt. Express 2015, 23, A346–A360. [Google Scholar] [CrossRef] [PubMed]
- You, D.; Wen, J.; Liu, Q.; Liu, Q.; Tang, Y. The Angular and Spectral Kernel-Driven Model: Assessment and Application. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1331–1345. [Google Scholar]
- Kuusk, A. A Two-Layer Canopy Reflectance Model. J. Quant. Spectrosc. Radiat. Transf. 2001, 71, 1–9. [Google Scholar] [CrossRef]
- Gobron, N.; Pinty, B.; Verstraete, M.M.; Govaerts, Y. A Semidiscrete Model for the Scattering of Light by Vegetation. J. Geophys. Res.-Atmos. 1997, 102, 9431–9446. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Chen, J.M. A Windows Graphic User Interface (GUI) for the Five-Scale Model for Fast BRDF Simulations. Remote Sens. Rev. 2000, 19, 293–305. [Google Scholar] [CrossRef]
- Dawson, T.P.; Curran, P.J.; Plummer, S.E. LIBERTY—Modeling the Effects of Leaf Biochemical Concentration on Reflectance Spectra. Remote Sens. Environ. 1998, 65, 50–60. [Google Scholar] [CrossRef]
- Chen, J.M.; Leblanc, S.G. A Four-Scale Bidirectional Reflectance Model Based on Canopy Architecture. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1316–1337. [Google Scholar] [CrossRef]
- Nicodemus, F.E.; Richmond, J.C.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T. Geometrical Considerations and Nomenclature for Reflectance; Richmond, J., Ed.; National Bureau of Standards: Washington, DC, USA, 1977. [Google Scholar]
- Bacour, C.; Breon, F.M. Variability of Biome Reflectance Directional Signatures as Seen by POLDER. Remote Sens. Environ. 2005, 98, 80–95. [Google Scholar] [CrossRef]
- Jin, Y.F.; Schaaf, C.B.; Gao, F.; Li, X.W.; Strahler, A.H.; Lucht, W.; Liang, S.L. Consistency of MODIS Surface Bidirectional Reflectance Distribution Function and Albedo Retrievals: 1. Algorithm Performance. J. Geophys. Res.-Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An Algorithm for the Retrieval of Albedo from Space Using Semiempirical BRDF Models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.W.; Tsang, T.; Strugnell, N.C.; Zhang, X.Y.; Jin, Y.F.; Muller, J.P.; et al. First Operational BRDF, Albedo Nadir Reflectance Products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Geiger, B.; Roujean, J.; Carrer, D.; Meurey, C. Product User Manual (PUM) Land Surface Albedo; LSA SAF Internal Documents; Eumetsat: Valencia, Spain, 2005; Volume 41, Available online: https://landsaf.ipma.pt/en/products/albedo/ (accessed on 20 January 2018).
- Martonchik, J.V.; Diner, D.J.; Pinty, B.; Verstraete, M.M.; Myneni, R.B.; Knyazikhin, Y.; Gordon, H.R. Determination of Land and Ocean Reflective, Radiative, and Biophysical Properties Using Multiangle Imaging. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1266–1281. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Xie, D.; Song, J.; Fensholt, R. A Framework for Consistent Estimation of Leaf Area Index, Fraction of Absorbed Photosynthetically Active Radiation, and Surface Albedo from MODIS Time-Series Data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3178–3197. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, J.; Liang, S.; Xiao, Z. Extended Data-Based Mechanistic Method for Improving Leaf Area Index Time Series Estimation with Satellite Data. Remote Sens. 2017, 9, 533. [Google Scholar] [CrossRef]
- Yi, Y.; Yang, D.; Huang, J.; Chen, D. Evaluation of MODIS Surface Reflectance Products for Wheat Leaf Area Index (LAI) Retrieval. Isprs J. Photogramm. Remote Sens. 2008, 63, 661–677. [Google Scholar] [CrossRef]
- Wang, L.; Dong, T.; Zhang, G.; Niu, Z. LAI Retrieval Using PROSAIL Model and Optimal Angle Combination of Multi-Angular Data in Wheat. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1730–1736. [Google Scholar] [CrossRef]
- He, L.; Chen, J.M.; Pisek, J.; Schaaf, C.B.; Strahler, A.H. Global Clumping Index Map Derived from the MODIS BRDF Product. Remote Sens. Environ. 2012, 119, 118–130. [Google Scholar] [CrossRef]
- Chen, J.M.; Menges, C.H.; Leblanc, S.G. Global Mapping of Foliage Clumping Index Using Multi-Angular Satellite Data. Remote Sens. Environ. 2005, 97, 447–457. [Google Scholar] [CrossRef]
- Jiao, Z.; Dong, Y.; Schaaf, C.B.; Chen, J.M.; Román, M.; Wang, Z.; Zhang, H.; Ding, A.; Erb, A.; Hill, M.J.; et al. An Algorithm for the Retrieval of the Clumping Index (CI) from the MODIS BRDF Product Using an Adjusted Version of the Kernel-Driven BRDF Model. Remote Sens. Environ. 2018, in press. [Google Scholar]
- Wang, Z.; Schaaf, C.B.; Lewis, P.; Knyazikhin, Y.; Schull, M.A.; Strahler, A.H.; Yao, T.; Myneni, R.B.; Chopping, M.J.; Blair, B.J. Retrieval of Canopy Height Using Moderate-Resolution Imaging Spectroradiometer (MODIS) Data. Remote Sens. Environ. 2011, 115, 1595–1601. [Google Scholar] [CrossRef]
- Verhoef, W. Light-Scattering by Leaf Layers with Application to Canopy Reflectance Modeling—The SAIL Model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef]
- Wanner, W.; Li, X.; Strahler, A.H. On the Derivation of Kernels for Kernel-Driven Models of Bidirectional Reflectance. J. Geophys. Res.-Atmos. 1995, 100, 21077–21089. [Google Scholar] [CrossRef]
- Roujean, J.L.; Leroy, M.; Deschamps, P.Y. A Bidirectional Reflectance Model of the Earths Surface for the Correction of Remote-Sensing Data. J. Geophys. Res.-Atmos. 1992, 97, 20455–20468. [Google Scholar] [CrossRef]
- Lucht, W.; Roujean, J.L. Considerations in the Parametric Modeling of BRDF and Albedo from Multiangular Satellite Sensor Observations. Remote Sens. Rev. 2000, 18, 343–379. [Google Scholar] [CrossRef]
- Jiao, Z.; Schaaf, C.B.; Dong, Y.; Roman, M.; Hill, M.J.; Chen, J.M.; Wang, Z.; Zhang, H.; Saenz, E.; Poudyal, R.; et al. A Method for Improving Hotspot Directional Signatures in BRDF Models Used for MODIS. Remote Sens. Environ. 2016, 186, 135–151. [Google Scholar] [CrossRef]
- Li, X.W.; Strahler, A.H. Geometric-Optical Bidirectional Reflectance Modeling of the Discrete Crown Vegetation Canopy—Effect of Crown Shape and Mutual Shadowing. IEEE Trans. Geosci. Remote Sens. 1992, 30, 276–292. [Google Scholar] [CrossRef]
- Lucht, W.; Lewis, P. Theoretical Noise Sensitivity of BRDF and Albedo Retrieval from the EOS-MODIS and MISR Sensors with Respect to Angular Sampling. Int. J. Remote Sens. 2000, 21, 81–98. [Google Scholar] [CrossRef]
- Li, X.; Gao, F.; Chen, L.; Strahler, A.H. Derivation and Validation of a New Kernel for Kernel-Driven BRDF Models. Proc. SPIE 1999, 3868, 368–379. [Google Scholar]
- Dong, Y.; Jiao, Z.; Zhang, H.; Bai, D.; Zhang, X.; Li, Y.; He, D. A Visualization Tool for the Kernel-Driven Model with Improved Ability in Data Analysis and Kernel Assessment. Comput. Geosci. 2016, 95, 1–10. [Google Scholar] [CrossRef]
- Zhang, H.; Jiao, Z.; Dong, Y.; Du, P.; Li, Y.; Lian, Y.; Cui, T. Analysis of Extracting Prior BRDF from MODIS BRDF Data. Remote Sens. 2016, 8, 1004. [Google Scholar] [CrossRef]
- Zhang, H.; Jiao, Z.; Dong, Y.; Li, X. Evaluation of BRDF Archetypes for Representing Surface Reflectance Anisotropy Using MODIS BRDF Data. Remote Sens. 2015, 7, 7826–7845. [Google Scholar] [CrossRef]
- Jiao, Z.; Hill, M.J.; Schaaf, C.B.; Zhang, H.; Wang, Z.; Li, X. An Anisotropic Flat Index (AFX) to Derive BRDF Archetypes from MODIS. Remote Sens. Environ. 2014, 141, 168–187. [Google Scholar] [CrossRef]
- Roman, M.O.; Gatebe, C.K.; Schaaf, C.B.; Poudyal, R.; Wang, Z.; King, M.D. Variability in Surface BRDF at Different Spatial Scales (30 M–500 M) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements. Remote Sens. Environ. 2011, 115, 2184–2203. [Google Scholar] [CrossRef]
- Allen, W.A.; Gausman, H.W.; Richards, A.J.; Thomas, J.R. Interaction of Isotropic Light with a Compact Plant Leaf. J. Opt. Soc. Am. 1969, 59, 1376–1379. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, W.; Zhou, D.; Gong, H. Sensitivity Analysis of Vegetation Reflectance to Biochemical and Biophysical Variables at Leaf, Canopy, and Regional Scales. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4014–4024. [Google Scholar] [CrossRef]
- Bacour, C.; Jacquemoud, S.; Tourbier, Y.; Dechambre, M.; Frangi, J.P. Design and Analysis of Numerical Experiments to Compare Four Canopy Reflectance Models. Remote Sens. Environ. 2002, 79, 72–83. [Google Scholar] [CrossRef]
- Saltelli, A.; Tarantola, S.; Chan, K. A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output. Technometrics 1999, 41, 39–56. [Google Scholar] [CrossRef]
- Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance Quantities in Optical Remote Sensing-Definitions and Case Studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Sandmeier, S.R.; Strahler, A.H. BRDF Laboratory Measurements. Remote Sens. Rev. 2000, 18, 481–502. [Google Scholar] [CrossRef]
- Qu, Y.; Liu, Q.; Liang, S.; Wang, L.; Liu, N.; Liu, S. Direct-Estimation Algorithm for Mapping Daily Land-Surface Broadband Albedo from MODIS Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 907–919. [Google Scholar] [CrossRef]
- Boréon, F.M.; Maignan, F. A BRDF–BPDF Database for the Analysis of Earth Target Reflectances. Earth Syst. Sci. Data 2017, 9, 31–45. [Google Scholar] [CrossRef]
- Privette, J.L.; Eck, T.F.; Deering, D.W. Estimating Spectral Albedo and Nadir Reflectance through Inversion of Simple BRDF Models with AVHRR/MODIS-like Data. J. Geophys. Res.-Atmos. 1997, 102, 29529–29542. [Google Scholar] [CrossRef]
- Ranson, K.J.; Biehl, L.L.; Bauer, M.E. Variation in Spectral Response of Soybeans with Respect to Illumination, View and Canopy Geometry. Int. J. Remote Sens. 1985, 6, 1827–1842. [Google Scholar] [CrossRef]
- Kimes, D.S.; Newcomb, W.W.; Nelson, R.F.; Schutt, J.B. Directional Reflectance Distributions of a Hardwood and Pine Forest Canopy. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 281–293. [Google Scholar] [CrossRef]
- Kimes, D.S. Dynamics of Directional Reflectance Factor Distributions for Vegetation Canopies. Appl. Opt. 1983, 22, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Jiao, Z.; Dong, Y.; Zhang, H.; Li, X. Analysis of BRDF and Albedo Retrieved by Kernel-Driven Models Using Field Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 149–161. [Google Scholar] [CrossRef]
- Gao, F.; Li, X.; Strahler, A.; Schaaf, C. Evaluation of the Li Transit Kernel for BRDF Modeling. Remote Sens. Rev. 2000, 19, 205–224. [Google Scholar] [CrossRef]
- Hu, B.; Lucht, W.; Li, X.; Strahler, A.H. Validation of Kernel-Driven Semiempirical Models for the Surface Bidirectional Reflectance Distribution Function of Land Surfaces. Remote Sens. Environ. 1997, 62, 201–214. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A Model of Leaf Optical Properties Spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Enriquez, E.; Fuertes, V.; Cabrera, M.J.; Seores, J.; Munoz, D.; Fernandez, J.F. New Strategy to Mitigate Urban Heat Island Effect: Energy Saving by Combining High Albedo and Low Thermal Diffusivity in Glass Ceramic Materials. Sol. Energy 2017, 149, 114–124. [Google Scholar] [CrossRef]
- Dickinson, R.E. Land Surface Processes and Climate Surface Albedos and Energy-Balance. Adv. Geophys. 1983, 25, 305–353. [Google Scholar]
- The Global Observing System for Climate: Implementation Needs; GCOS: Geneva, Switzerland, 2016; p. 325.
- Jin, Y.F.; Schaaf, C.B.; Woodcock, C.E.; Gao, F.; Li, X.W.; Strahler, A.H.; Lucht, W.; Liang, S.L. Consistency of MODIS Surface Bidirectional Reflectance Distribution Function and Albedo Retrievals: 2. Validation. J. Geophys. Res.-Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Shuai, Y.; Schaaf, C.B.; Strahler, A.H.; Liu, J.; Jiao, Z. Quality Assessment of BRDF/albedo Retrievals in MODIS Operational System. Geophys. Res. Lett. 2008, 35, 544–548. [Google Scholar] [CrossRef]
- Liu, J.; Schaaf, C.; Strahler, A.; Jiao, Z.; Shuai, Y.; Zhang, Q.; Roman, M.; Augustine, J.A.; Dutton, E.G. Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) Albedo Retrieval Algorithm: Dependence of Albedo on Solar Zenith Angle. J. Geophys. Res.-Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Fang, H.; Wei, S.; Liang, S. Validation of MODIS and CYCLOPES LAI Products Using Global Field Measurement Data. Remote Sens. Environ. 2012, 119, 43–54. [Google Scholar] [CrossRef]
Parameter | Units | Common Value (range) |
---|---|---|
Leaf Scale | ||
leaf structure parameter (Ns) | -- | 1.5 (1–3) |
chlorophyll a and b contents (Cab) | μg/cm2 | 50 (0–100) |
carotenoid content (Car) | μg/cm2 | 10 (5–30) |
brown pigment content (Cbrown) | -- | 0 |
equivalent water thickness (Cw) | cm | 0.015 (0.004–0.04) |
leaf mass per unit leaf area (Cm) | g/cm2 | 0.009 (0.0019–0.0165) |
Canopy Scale | ||
LAI | m2/m2 | 3.5 (0–6) |
average leaf angle (ALA) | degrees (°) | 50 (0–90) |
hot spot (Hspot) | mm | 0.2 (0–1) |
soil coefficient () | -- | 0.1 (0–1) |
diffuse/direct radiation (SKYL) | % | 0 (0–100) |
Observation geometry | ||
SZA | degrees (°) | 30 (0–90) |
VZA | degrees (°) | 0 (0–90) |
relative azimuth angle () | degrees (°) | 0 (0–180) |
Num | Land Cover | LAI (m2/m2) | Coverage (%) | Chlorosis (%) | Cloud (%) | SKYL (%) |
---|---|---|---|---|---|---|
1 | Corn 1 | 0.65 | 25 | 0–5 4 | 0 | 0 6 |
2 | Hardwood 2 | 4.20 | 79 | 0 | 0 6 | |
3 | Lawn grass 1 | 9.90 | 97 | 0–5 4 | 0 | 0 6 |
4 | Orchard grass 3 | 1.10 | 50 | 30–40 4 | 0 | 0 6 |
5 | Soybean 2 | 4.60 | 90 | 0–5 4 | 0 | 0 6 |
6 | Mixed grass | 1.50 | 10 | 15 | ||
7 | Sand shinnery oak | 1.75 | 60.2 | 5–10 | (SZA, ) | |
8 | Grassland 3 | 1.39 ± 0.36 | 68.2 5 | 0 | 10 | |
9 | Grassland | 1.55 ± 0.53 | 4.7 5 | 0 | 10 | |
10 | Grassland 3 | 1.19 ± 0.53 | 36.7 5 | 0 | 10 | |
11 | Dense grass-like vegetation 3 | 0.94 ± 0.30 | 65.9 5 | 0–5 | 10 | |
12 | Sparse grass 3 | 0.24 ± 0.05 | 42.9 5 | 0 | 10 | |
13 | Dense grass-like vegetation 3 | 0.60 ± 0.34 | 59.1 5 | 0–5 | 10 | |
14 | Grassland 3 | 1.91 ± 0.49 | 43.9 5 | 0–5 | 10 | |
15 | Sparse grass-like vegetation 3 | 0.12 ± 0.04 | 50.3 5 | 0 | 10 | |
16 | Grassland | 3.59 | 5 | 8 | ||
17 | Grassland | 4.06 | 10 | 15 | ||
18 | Cotton 2 | 4.00 | 0 | 10 | ||
19 | Soybean 2 | 3.00 ± 0.50 | 72 ± 4 | 10–20 | 20 | |
20 | Soybean 2 | 3.90 ± 0.60 | 83 ± 3 | 1–20 | 15 | |
21 | Soybean 2 | 2.90 ± 0.40 | 99 ± 1 | 0 | 10 |
Statistics | AFXRed | AFXNIR | RMSERed(LSR) | RMSENIR(LSR) | RMSERed(LTR) | RMSENIR(LTR) |
---|---|---|---|---|---|---|
Minimum | 0.53 | 0.86 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Maximum | 1.56 | 1.60 | 0.1111 | 0.1745 | 0.1120 | 0.1745 |
Average | 0.85 | 1.05 | 0.0092 | 0.0355 | 0.0103 | 0.0355 |
Band | Error | WSA | BSAtotal | BSA0 1 | BSA15 | BSA30 | BSA45 | BSA60 |
---|---|---|---|---|---|---|---|---|
Red | [0, 0.02] | 98.72 | 39.35 | 3.67 | 4.25 | 10.78 | 82.53 | 95.52 |
[−0.02, 0) | 1.26 | 59.30 | 93.25 | 94.57 | 89.21 | 17.33 | 2.13 | |
(0.02, 0.05] | 0.01 | 0.60 | 0.51 | 0.29 | 0.00 | 0.00 | 2.21 | |
[−0.05, −0.02) | 0.00 | 0.72 | 2.44 | 0.89 | 0.01 | 0.13 | 0.14 | |
>0.05 | 0.01 | 0.03 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | |
<-0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | |
NIR | [0, 0.02] | 79.33 | 36.91 | 14.91 | 18.99 | 19.69 | 62.08 | 68.90 |
[−0.02, 0) | 18.66 | 49.60 | 64.32 | 63.99 | 79.60 | 24.23 | 15.82 | |
(0.02, 0.05] | 0.81 | 4.77 | 9.33 | 13.14 | 0.22 | 0.17 | 1.00 | |
[−0.05, −0.02) | 0.09 | 4.99 | 0.00 | 0.00 | 0.42 | 11.84 | 12.71 | |
>0.05 | 1.11 | 3.19 | 11.44 | 3.88 | 0.07 | 0.03 | 0.53 | |
<−0.05 | 0.00 | 0.54 | 0.00 | 0.00 | 0.00 | 1.65 | 1.04 |
Error | LAI ≤ 1(>1) | ALA ≤ 40(>40) | Cab ≤ 20(>20) | Psoil ≤ 0.2(>0.2) |
---|---|---|---|---|
Bias_PROSAIL_Red | 0.0185(0.0151) 1 | 0.0125(0.0167) 1 | 0.0183(0.0135) 1 | 0.0168(0.0149) |
RMSE_PROSAIL_Red | 0.0364(0.0258) 1 | 0.0190(0.0306) 1 | 0.0299(0.0277) 1 | 0.0249(0.0322) 1 |
RMSE_RTLSR_Red | 0.0156(0.0096) 1 | 0.0110(0.0110) 1 | 0.0120(0.0085) 1 | 0.0103(0.0118) 1 |
Bias_PROSAIL_NIR | 0.0463(0.0367) | 0.0141(0.0448) 1 | ||
RMSE_PROSAIL_NIR | 0.0743(0.0820) 1 | 0.0694(0.0827) 1 | ||
RMSE_RTLSR_NIR | 0.0346(0.0455) 1 | 0.0570(0.0395) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Jiao, Z.; Dong, Y.; Zhang, H.; Li, Y.; He, D.; Ding, A.; Yin, S.; Cui, L.; Chang, Y. Potential Investigation of Linking PROSAIL with the Ross-Li BRDF Model for Vegetation Characterization. Remote Sens. 2018, 10, 437. https://doi.org/10.3390/rs10030437
Zhang X, Jiao Z, Dong Y, Zhang H, Li Y, He D, Ding A, Yin S, Cui L, Chang Y. Potential Investigation of Linking PROSAIL with the Ross-Li BRDF Model for Vegetation Characterization. Remote Sensing. 2018; 10(3):437. https://doi.org/10.3390/rs10030437
Chicago/Turabian StyleZhang, Xiaoning, Ziti Jiao, Yadong Dong, Hu Zhang, Yang Li, Dandan He, Anxin Ding, Siyang Yin, Lei Cui, and Yaxuan Chang. 2018. "Potential Investigation of Linking PROSAIL with the Ross-Li BRDF Model for Vegetation Characterization" Remote Sensing 10, no. 3: 437. https://doi.org/10.3390/rs10030437
APA StyleZhang, X., Jiao, Z., Dong, Y., Zhang, H., Li, Y., He, D., Ding, A., Yin, S., Cui, L., & Chang, Y. (2018). Potential Investigation of Linking PROSAIL with the Ross-Li BRDF Model for Vegetation Characterization. Remote Sensing, 10(3), 437. https://doi.org/10.3390/rs10030437