Incorporating Density in Spatiotemporal Land Use/Cover Change Patterns: The Case of Attica, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used
2.3. Image Pre-Processing
2.4. Sampling and Validation
2.5. RF Classification and Accuracy Assessment
2.6. Change Detection
3. Results
4. Discussion
LUC Change in Attica
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sagan, C.; Toon, O.B.; Pollack, J.B. Anthropogenic albedo changes and the Earth’s climate. Science 1979, 206, 1363–1368. [Google Scholar] [CrossRef] [PubMed]
- Meyer, W.B.; Turner, B.L., II. Land-use/land-cover change: Challenges for geographers. GeoJournal 1996, 39, 237–240. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. The Importance of Land-Cover Change in Simulating Future Climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, H.K.; Salmon, J.M. Mapping the world’s degraded lands. Appl. Geogr. 2015, 57, 12–21. [Google Scholar] [CrossRef]
- Turner, B.L., II. Local faces, global flows: The role of land use and land cover in global environmental change. Land Degrad. Rehabil. 1994, 5, 71–78. [Google Scholar] [CrossRef]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B. Digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Rozenstein, O.; Karnieli, A. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl. Geogr. 2011, 31, 533–544. [Google Scholar] [CrossRef]
- Belward, A.S.; Skøien, J.O. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation. ISPRS J. Photogramm. 2014, 103, 115–128. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Friedl, M.A.; Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 2009, 4, 044003. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2013, 144, 152–171. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Giri, C.; Pengra, B.; Long, J.; Loveland, T.R. Next generation of global land cover characterization, mapping, and monitoring. Int. J. Appl. Earth Obs. 2013, 25, 30–37. [Google Scholar] [CrossRef]
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Conway, T.M. The impact of class resolution in land use change models. Comput. Environ. Urban 2009, 33, 269–277. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Malizia, N.R. Effect of category aggregation on map comparison. In GIScience 2004; Engenhofer, M.J., Freska, C., Miller, H.J., Eds.; Springer: New York, NY, USA, 2004; pp. 251–268. [Google Scholar]
- Buyantuyev, A.; Wu, J. Effects of thematic resolution on landscape pattern analysis. Landsc. Ecol. 2007, 22, 7–13. [Google Scholar] [CrossRef]
- Liang, Y.; He, H.; Fraser, J.S.; Wu, Z.W. Thematic and Spatial Resolutions Affect Model-Based Predictions of Tree Species Distribution. PLoS ONE 2013, 8, e67889. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Qian, Y.; Li, X.; Li, W.; Han, L. Relationships between land cover and the surface urban heat island: Seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landsc. Ecol. 2014, 29, 153–167. [Google Scholar] [CrossRef]
- Bailey, D.; Herzog, F.; Augenstein, I.; Aviron, S.; Billeter, R.; Szerencsits, E.; Baudry, J. Thematic resolution matters: Indicators of landscape pattern for European agro-ecosystems. Ecol. Indic. 2007, 7, 692–709. [Google Scholar] [CrossRef]
- Símová, P.; Gdulová, K. Landscape indices behavior: A review of scale effects. Appl. Geogr. 2012, 34, 385–394. [Google Scholar] [CrossRef]
- Potere, D.; Schneider, A.; Angel, S.; Civco, D.L. Mapping urban areas on a global scale: Which of the eight maps now available is more accurate? Int. J. Remote Sens. 2009, 30, 6531–6558. [Google Scholar] [CrossRef]
- Bossard, M.; Feranec, J.; Otahel, J. CORINE Land Cover Technical Guide—Addendum 2000 (Report No. 40); European Environment Agency: Copenhagen, Denmark, 2000. [Google Scholar]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Shi, Y.; Yamaguchi, Y. An automated approach for updating land cover maps based on integrated change detection and classification methods. ISPRS J. Photogramm. 2012, 71, 86–95. [Google Scholar] [CrossRef]
- Comber, A.J.; Law, A.N.R.; Lishman, J.R. Application of knowledge for automated land cover change monitoring. Int. J. Remote Sens. 2004, 25, 3177–3192. [Google Scholar] [CrossRef] [Green Version]
- Huth, J.; Kuenzer, C.; Wehrmann, T.; Gebhardt, S.; Quoc Tuan, V.; Dech, S. Land Cover and Land Use Classification with TWOPAC: Towards Automated Processing for Pixel- and Object-Based Image Classification. Remote Sens. 2012, 4, 2530–2553. [Google Scholar] [CrossRef]
- Radoux, J.; Lamarche, C.; Van Bogaert, E.; Bontemps, S.; Brockmann, C.; Defourny, P. Automated Training Sample Extraction for Global Land Cover Mapping. Remote Sens. 2014, 6, 3965–3987. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Van Der Wiele, C.F.; Khorram, S. An Automated Artificial Neural Network System for Land Use/Land Cover Classification from Landsat TM Imagery. Remote Sens. 2009, 1, 243–265. [Google Scholar] [CrossRef] [Green Version]
- Gounaridis, D.; Apostolou, A.; Koukoulas, S. Land Cover of Greece, 2010: A semi-automated classification using Random Forests. J. Maps 2016, 12, 1055–1062. [Google Scholar] [CrossRef]
- Jiang, D.; Huang, Y.; Zhuang, D.; Zhu, Y.; Xu, X.; Ren, H. A Simple Semi-Automatic Approach for Land Cover Classification from Multispectral Remote Sensing Imagery. PLoS ONE 2012, 7, e45889. [Google Scholar] [CrossRef] [PubMed]
- Xian, G.; Collin, H.; Fry, J. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sens. Environ. 2009, 113, 1133–1147. [Google Scholar] [CrossRef]
- Klein, I.; Gessner, U.; Kuenzer, C. Regional land cover mapping and change detection in Central Asia using MODIS time-series. Appl. Geogr. 2012, 35, 219–234. [Google Scholar] [CrossRef]
- Mantouvalou, M.; Mavridou, M.; Vaiou, D. Processes of social integration and urban development in Greece: Southern challenges to European unification. Eur. Plan. Stud. 1995, 3, 189–204. [Google Scholar] [CrossRef]
- Leontidou, L.; Afouxenidis, A.; Kourliouros, E.; Marmaras, E. Infrastructure-Related Urban Sprawl: Mega-Events and Hybrid Peri-Urban Landscapes in Southern Europe, in Urban Sprawl in Europe: Landscapes, Land-Use Change & Policy; Couch, C., Leontidou, L., Petschel-Held, G., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2007. [Google Scholar]
- Arapoglou, V.P.; Sayas, J. New facets of urban segregation in southern Europe. Eur. Urban Reg. Stud. 2009, 16, 345–362. [Google Scholar] [CrossRef]
- Pagonis, A. The Evolution of Metropolitan Planning Policy in Athens over the Last Three Decades: Linking Shifts in the Planning Discourse with Institutional Changes and Spatial Transformation. Changing Cities: Spatial, Morphological, Formal and Socioeconomic Dimensions; University of Thessaly: Skiathos, Greece, 2013. [Google Scholar]
- Chorianopoulos, I.; Pagonis, A.; Koukoulas, S.; Drymoniti, S. Planning, competitiveness and sprawl in the Mediterranean city: The case of Athens. Cities 2010, 27, 249–259. [Google Scholar] [CrossRef]
- Chorianopoulos, I.; Tsilimigkas, G.; Koukoulas, S.; Balatsos, T. The shift to competitiveness and a new phase of sprawl in the Mediterranean city: Enterprises guiding growth in Messoghia—Athens. Cities 2014, 39, 133–143. [Google Scholar] [CrossRef]
- Bank of Greece. Summary of the Annual Report (2015); Bank of Greece: Athens, Greece, 2016. [Google Scholar]
- Gounaridis, D.; Chorianopoulos, I.; Koukoulas, S. Exploring prospective urban growth trends under different economic outlooks and land-use planning scenarios: The case of Athens. Appl. Geogr. 2018, 90, 134–144. [Google Scholar] [CrossRef]
- Municipality of Athens. Study on Market Trends and Development; Centre for Entrepreneurial Support: Athens, Greece, 2014. [Google Scholar]
- Chavez, P.S., Jr. An improved dark-object subtraction technique for atmospheric scattering correction of multi-spectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Vermote, E.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcrette, J.-J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Civco, D.L. Topographic normalization of Landsat thematic mapper digital imagery. Photogramm. Eng. Remote Sens. 1989, 55, 1303–1309. [Google Scholar]
- Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the slope-aspect correction of multispectral scanner data. Can. J. Remote Sens. 1982, 8, 84–106. [Google Scholar] [CrossRef]
- European Commission. Urban Atlas—Delivery of Land Use/Cover Maps of Major European Agglomerations; Final Report V 2.0; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Gounaridis, D.; Koukoulas, S. Urban land cover thematic disaggregation, employing datasets from multiple sources and RandomForests modelling. Int. J. Appl. Earth Obs. 2016, 51, 1–10. [Google Scholar] [CrossRef]
- Kim, D.-H.; Sexton, J.O.; Noojipady, P.; Huang, C.; Anand, A.; Channan, S.; Feng, M.; Townshend, J.R. Global, Landsat-based forest-cover change from 1990 to 2000. Remote Sens. Environ. 2014, 155, 178–193. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M. Land cover change analysis of a Mediterranean area in Spain using different sources of data: Multi-seasonal landsat images, land surface temperature, digital terrain models and texture. Appl. Geogr. 2012, 35, 208–218. [Google Scholar] [CrossRef]
- Gounaridis, D.; Zaimes, N.G.; Koukoulas, S. Quantifying spatio-temporal patterns of forest fragmentation in Hymettus Mountain, Greece. Comput. Environ. Urban 2014, 46, 35–44. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- As-Syakur, A.R.; Adnyana, I.; Arthana, I.W.; Nuarsa, I.W. Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area. Remote Sens. 2012, 4, 2957–2970. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Cibula, W.G.; Zetka, E.F.; Rickman, D.L. Response of thematic mapper bands to plant water stress. Int. J. Remote Sens. 1992, 13, 1869–1880. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Crist, E.P. A TM tasseled cap equivalent transformation for reflectance factor data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- USGS. GLSDEM, 90 m Scene GLSDEM_p123r024_utmz13; Global Land Cover Facility, University of Maryland: College Park, MD, USA, 2008.
- Liaw, A.; Wiener, M. Classification and regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Tsilimigkas, G.; Stathakis, D.; Pafi, M. Evaluating the land use patterns of medium-sized Hellenic cities. Urban Res. Pract. 2015, 9, 181–203. [Google Scholar] [CrossRef]
- Morelli, V.G.; Salvati, L. Ad Hoc Urban Sprawl in the Mediterranean City: Dispersing a Compact Tradition? Nuova Cultura: Rome, Italy, 2010. [Google Scholar]
- Lagarias, A.; Sayas, J. Comparing Peri-Urban Patterns of Greek Cities Using Spatial Metrics to Measure Urban Sprawl. Conference Proceedings: Cities and Regions in a Changing Europe: Challenges and Prospects, 5–7 July, Panteion University, Athens, Greece. 2017. Available online: http://asrdlf2017.com/asrdlf2017_com/envoitextefinal/auteur/textedef/219.pdf (accessed on 29 June 2018).
- Guy, S.; Henneberry, J. Development and Developers: Perspectives on Property; Blackwell: Oxford, UK, 2008. [Google Scholar]
- Tsilimigkas, G.; Kizos, T.; Gourgiotis, A. Unregulated urban sprawl and spatial distribution of fire events: Evidence from Greece. Environ. Hazards 2018. [Google Scholar] [CrossRef]
- Gounaridis, D.; Chorianopoulos, I.; Symeonakis, E.; Koukoulas, S. A Random Forest-Cellular Automata modelling approach to explore future land use/cover change in Attica (Greece), under different socio-economic realities and scales. Sci. Total Environ. 2018. submitted. [Google Scholar]
- Symeonakis, E.; Caccetta, P.; Koukoulas, S.; Furby, S.; Karathanasis, N. Multi-temporal land cover classification and change analysis with Conditional Probability Networks: The case of Lesvos Island (Greece). Int. J. Remote Sens. 2012, 33, 4075–4093. [Google Scholar] [CrossRef]
- Colditz, R.R. An Evaluation of Different Training Sample Allocation Schemes for Discrete and Continuous Land Cover Classification Using Decision Tree-Based Algorithms. Remote Sens. 2015, 7, 9655–9681. [Google Scholar] [CrossRef] [Green Version]
Date | Sensor | Satellite | Resolution (m) | Path/Row |
---|---|---|---|---|
17 September 1991 | Thematic Mapper (TM) | Landsat 4 | 30 | 183/034 |
29 June 1991 | Thematic Mapper (TM) | Landsat 4 | 30 | 183/033 |
22 August 1999 | Enhanced Thematic Mapper Plus (ETM+) | Landsat 7 | 30 | 183/034 |
22 August 1999 | Enhanced Thematic Mapper Plus (ETM+) | Landsat 7 | 30 | 183/033 |
12 October 2003 | Thematic Mapper (TM) | Landsat 5 | 30 | 183/034 |
12 October 2003 | Thematic Mapper (TM) | Landsat 5 | 30 | 183/033 |
12 August 2010 | Thematic Mapper (TM) | Landsat 5 | 30 | 183/034 |
12 August 2010 | Thematic Mapper (TM) | Landsat 5 | 30 | 183/033 |
29 September 2016 | Operational Land Imager (OLI) | Landsat 8 | 30 | 183/034 |
29 September 2016 | Operational Land Imager (OLI) | Landsat 8 | 30 | 183/033 |
LUC Categories | Training | ||||
---|---|---|---|---|---|
1991 | 1999 | 2003 | 2010 | 2016 | |
Continuous urban fabric | 1798 | 2321 | 2622 | 4095 | 5707 |
Discontinuous dense urban fabric | 969 | 1401 | 1808 | 2329 | 3159 |
Discontinuous medium density urban fabric | 1021 | 1286 | 1446 | 1888 | 2617 |
Discontinuous low density urban fabric | 502 | 895 | 1175 | 2331 | 3221 |
Industrial, commercial, and transport units | 473 | 685 | 991 | 1245 | 1717 |
Arable land and permanent crops | 2009 | 2119 | 2409 | 2009 | 2776 |
Forests, scrubs, and other natural areas | 1449 | 1463 | 1559 | 1568 | 1974 |
Other (open spaces, bare land, mines, inland water) | 453 | 460 | 475 | 525 | 574 |
Total | 8674 | 10,630 | 12,485 | 15,990 | 21,745 |
Validation | |||||
Total | 3637 | 4319 | 5419 | 6919 | 9399 |
1991 | 1999 | ||||||||||||||||||
Result | Result | ||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | P.A | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | P.A | ||
Reference | 1 | 681 | 11 | 3 | 9 | 97% | 1012 | 28 | 6 | 8 | 96% | ||||||||
2 | 14 | 631 | 28 | 12 | 2 | 2 | 2 | 91% | 58 | 1174 | 22 | 18 | 2 | 6 | 14 | 91% | |||
3 | 31 | 51 | 1710 | 58 | 4 | 6 | 6 | 4 | 91% | 32 | 67 | 1833 | 15 | 15 | 6 | 3 | 11 | 92% | |
4 | 8 | 20 | 104 | 1288 | 12 | 20 | 10 | 8 | 88% | 28 | 90 | 1426 | 36 | 24 | 12 | 4 | 88% | ||
5 | 10 | 15 | 10 | 515 | 15 | 5 | 10 | 89% | 25 | 20 | 15 | 5 | 859 | 15 | 10 | 91% | |||
6 | 12 | 13 | 40 | 148 | 24 | 6576 | 168 | 28 | 94% | 6 | 46 | 48 | 196 | 26 | 4946 | 120 | 26 | 91% | |
7 | 8 | 6 | 42 | 11 | 109 | 2337 | 11 | 93% | 21 | 63 | 22 | 16 | 188 | 2427 | 19 | 88% | |||
8 | 1 | 7 | 10 | 16 | 11 | 258 | 85% | 10 | 24 | 14 | 28 | 14 | 456 | 84% | |||||
U.A | 91% | 85% | 90% | 83% | 86% | 98% | 92% | 80% | 89% | 85% | 88% | 84% | 87% | 95% | 94% | 84% | |||
O.A | 92.2% | 90.5% | |||||||||||||||||
2003 | 2010 | ||||||||||||||||||
Result | Result | ||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | P.A | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | P.A | ||
Reference | 1 | 1323 | 42 | 10 | 19 | 1 | 95% | 1838 | 51 | 21 | 14 | 1 | 95% | ||||||
2 | 56 | 1658 | 52 | 4 | 20 | 8 | 6 | 4 | 92% | 72 | 2241 | 42 | 10 | 36 | 4 | 8 | 12 | 92% | |
3 | 30 | 35 | 2276 | 30 | 38 | 3 | 12 | 16 | 93% | 21 | 46 | 2299 | 63 | 31 | 15 | 21 | 9 | 92% | |
4 | 48 | 86 | 2682 | 56 | 64 | 24 | 12 | 90% | 48 | 91 | 3246 | 76 | 42 | 40 | 10 | 91% | |||
5 | 25 | 20 | 15 | 20 | 1165 | 30 | 10 | 10 | 90% | 33 | 20 | 40 | 21 | 1798 | 25 | 7 | 92% | ||
6 | 32 | 46 | 228 | 38 | 4128 | 60 | 16 | 91% | 6 | 18 | 162 | 54 | 4091 | 64 | 12 | 93% | |||
7 | 7 | 21 | 61 | 21 | 224 | 2860 | 24 | 89% | 14 | 48 | 28 | 207 | 3528 | 14 | 92% | ||||
8 | 8 | 6 | 14 | 20 | 19 | 443 | 87% | 8 | 16 | 11 | 14 | 20 | 490 | 88% | |||||
U.A | 92% | 90% | 91% | 88% | 85% | 92% | 96% | 84% | 94% | 92% | 92% | 91% | 88% | 93% | 96% | 88% | |||
O.A | 90.7% | 92.3% | |||||||||||||||||
2016 | |||||||||||||||||||
Result | |||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | P.A | |||||||||||
Reference | 1 | 2683 | 59 | 19 | 24 | 2 | 2 | 96% | |||||||||||
2 | 80 | 3252 | 76 | 18 | 42 | 22 | 10 | 8 | 93% | ||||||||||
3 | 24 | 61 | 2964 | 101 | 35 | 17 | 36 | 20 | 91% | ||||||||||
4 | 4 | 32 | 92 | 5446 | 78 | 112 | 44 | 1 | 94% | ||||||||||
5 | 55 | 30 | 30 | 30 | 2325 | 105 | 17 | 90% | |||||||||||
6 | 6 | 12 | 36 | 30 | 4866 | 66 | 26 | 97% | |||||||||||
7 | 14 | 35 | 28 | 182 | 4823 | 22 | 94% | ||||||||||||
8 | 16 | 16 | 34 | 24 | 616 | 87% | |||||||||||||
U.A | 94% | 94% | 93% | 96% | 90% | 91% | 96% | 87% | |||||||||||
O.A | 93.5% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gounaridis, D.; Symeonakis, E.; Chorianopoulos, I.; Koukoulas, S. Incorporating Density in Spatiotemporal Land Use/Cover Change Patterns: The Case of Attica, Greece. Remote Sens. 2018, 10, 1034. https://doi.org/10.3390/rs10071034
Gounaridis D, Symeonakis E, Chorianopoulos I, Koukoulas S. Incorporating Density in Spatiotemporal Land Use/Cover Change Patterns: The Case of Attica, Greece. Remote Sensing. 2018; 10(7):1034. https://doi.org/10.3390/rs10071034
Chicago/Turabian StyleGounaridis, Dimitrios, Elias Symeonakis, Ioannis Chorianopoulos, and Sotirios Koukoulas. 2018. "Incorporating Density in Spatiotemporal Land Use/Cover Change Patterns: The Case of Attica, Greece" Remote Sensing 10, no. 7: 1034. https://doi.org/10.3390/rs10071034
APA StyleGounaridis, D., Symeonakis, E., Chorianopoulos, I., & Koukoulas, S. (2018). Incorporating Density in Spatiotemporal Land Use/Cover Change Patterns: The Case of Attica, Greece. Remote Sensing, 10(7), 1034. https://doi.org/10.3390/rs10071034