JAXA High-Resolution Land Use/Land Cover Map for Central Vietnam in 2007 and 2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Classification Scheme and Reference Data Design
2.3. Data and Image Preprocessing
2.4. Classification Method
2.5. Accuracy Assessment
3. Results
4. Discussion
4.1. Uncertainties of Global Land Cover Maps over Central Vietnam
4.2. Ten-Year Land Cover Change over Central Vietnam
4.3. Potential Application and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arunyawat, S.; Shrestha, R. Assessing Land Use Change and Its Impact on Ecosystem Services in Northern Thailand. Sustainability 2016, 8, 768. [Google Scholar] [CrossRef]
- Koschke, L.; Fürst, C.; Frank, S.; Makeschin, F. A multi-criteria approach for an integrated land-cover-based assessment of ecosystem services provision to support landscape planning. Ecol. Indic. 2012, 21, 54–66. [Google Scholar] [CrossRef]
- Tolessa, T.; Senbeta, F.; Kidane, M. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Sterling, S.M.; Ducharne, A.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Chang. 2012, 3, 385–390. [Google Scholar] [CrossRef]
- Nosetto, M.D.; Jobbágy, E.G.; Brizuela, A.B.; Jackson, R.B. The hydrologic consequences of land cover change in central Argentina. Agric. Ecosyst. Environ. 2012, 154, 2–11. [Google Scholar] [CrossRef]
- Nugroho, P.; Marsono, D.; Sudira, P.; Suryatmojo, H. Impact of Land-use Changes on Water Balance. Procedia Environ. Sci. 2013, 17, 256–262. [Google Scholar] [CrossRef]
- Salazar, A.; Baldi, G.; Hirota, M.; Syktus, J.; McAlpine, C. Land use and land cover change impacts on the regional climate of non-Amazonian South America: A review. Glob. Planet. Chang. 2015, 128, 103–119. [Google Scholar] [CrossRef]
- Duong, P.C.; Nauditt, A.; Nam, H.; Phong, N.T. Assessment of climate change impact on river flow regimes in The Red River Delta, Vietnam—A case study of the Nhue-Day River Basin. J. Nat. Resour. Dev. 2016, 6, 81–91. [Google Scholar] [CrossRef]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Luyssaert, S.; Jammet, M.; Stoy, P.C.; Estel, S.; Pongratz, J.; Ceschia, E.; Churkina, G.; Don, A.; Erb, K.; Ferlicoq, M.; et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Chang. 2014, 4, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J. Modeled impact of anthropogenic land cover change on climate. J. Clim. 2007, 20, 3621–3634. [Google Scholar] [CrossRef]
- Bounoua, L.; DeFries, R.; Collatz, G.J.; Sellers, P.; Khan, H. Effects of land cover conversion on surface climate. Clim. Chang. 2002, 52, 29–64. [Google Scholar] [CrossRef]
- Pielke, R.A.; Pitman, A.; Niyogi, D.; Mahmood, R.; McAlpine, C.; Hossain, F.; Goldewijk, K.K.; Nair, U.; Betts, R.; Fall, S.; et al. Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 828–850. [Google Scholar] [CrossRef]
- Nam, D.H.; Duong, P.C.; Thuan, D.H.; Mai, D.T.; Dung, N.Q. Assessment of Near-Term Runoff Response at a River Basin Scale in Central Vietnam Using Direct CMIP5. Water 2018, 10, 477. [Google Scholar] [CrossRef]
- Niquisse, S.; Cabral, P.; Rodrigues, Â.; Augusto, G. Ecosystem services and biodiversity trends in Mozambique as a consequence of land cover change. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Nagendra, H.; Reyers, B.; Lavorel, S. Impacts of land change on biodiversity: Making the link to ecosystem services. Curr. Opin. Environ. Sustain. 2013, 5, 503–508. [Google Scholar] [CrossRef]
- Zimmermann, P.; Tasser, E.; Leitinger, G.; Tappeiner, U. Effects of land-use and land-cover pattern on landscape-scale biodiversity in the European Alps. Agric. Ecosyst. Environ. 2010, 139, 13–22. [Google Scholar] [CrossRef]
- Jiang, L.; Deng, X.; Seto, K.C. The impact of urban expansion on agricultural land use intensity in China. Land Use Policy 2013, 35, 33–39. [Google Scholar] [CrossRef]
- Lafontaine, J.H.; Hay, L.E.; Viger, R.J.; Regan, R.S.; Markstrom, S.L. Effects of Climate and Land Cover on Hydrology in the Southeastern U.S.: Potential Impacts on Watershed Planning. J. Am. Water Resour. Assoc. 2015, 51, 1235–1261. [Google Scholar] [CrossRef]
- Pauleit, S.; Duhme, F. Assessing the environmental performance of land cover types for urban planning. Landsc. Urban Plan. 2000, 52, 1–50. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Vu, T.P.; Hoang, V.A. Trajectories of deforestation, coffee expansion and displacement of shifting cultivation in the Central Highlands of Vietnam. Glob. Environ. Chang. 2013, 23, 1187–1198. [Google Scholar] [CrossRef]
- Titeux, N.; Henle, K.; Mihoub, J.B.; Regos, A.; Geijzendorffer, I.R.; Cramer, W.; Verburg, P.H.; Brotons, L. Biodiversity scenarios neglect future land-use changes. Glob. Chang. Biol. 2016, 22, 2505–2515. [Google Scholar] [CrossRef] [PubMed]
- Meyfroidt, P.; Lambin, E.F. Forest transition in Vietnam and its environmental impacts. Glob. Chang. Biol. 2008, 14, 1319–1336. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Binh, B.Q. The Annual Rate of Economic Growth in Central Vietnam. Unpublished. 2018. [Google Scholar]
- Avitabile, V.; Schultz, M.; Herold, N.; de Bruin, S.; Pratihast, A.K.; Manh, C.P.; Quang, H.V.; Herold, M. Carbon emissions from land cover change in Central Vietnam. Carbon Manag. 2016, 7, 333–346. [Google Scholar] [CrossRef]
- Disperati, L.; Virdis, S.G.P. Assessment of land-use and land-cover changes from 1965 to 2014 in Tam Giang-Cau Hai Lagoon, central Vietnam. Appl. Geogr. 2015, 58, 48–64. [Google Scholar] [CrossRef]
- World Bank Group. Vulnerability, Risk Reduction, and Adaptation to Climate Change; World Bank Group: Washington, DC, USA, 2011. [Google Scholar]
- Dung, P.T.; Sharma, S. Responding to Climate Change in the Agriculture and Rural Development Sector in Vietnam. In Redefining Diversity and Dynamics of Natural Resources Management in Asia; Elsevier: Amsterdam, The Netherlands, 2016; Volume 2, pp. 13–25. ISBN 9780128104729. [Google Scholar]
- Rutten, M.; Van Dijk, M.; Van Rooij, W.; Hilderink, H. Land use dynamics, climate change, and food security in Vietnam: A global-to-local modeling approach. World Dev. 2014, 59, 29–46. [Google Scholar] [CrossRef]
- Langerwisch, F.; Václavík, T.; von Bloh, W.; Vetter, T.; Thonicke, K. Combined effects of climate and land-use change on the provision of ecosystem services in rice agro-ecosystems. Environ. Res. Lett. 2018, 13, 015003. [Google Scholar] [CrossRef]
- Lee, H.S.; Trihamdani, A.R.; Kubota, T.; Iizuka, S.; Phuong, T.T.T. Impacts of land use changes from the Hanoi Master Plan 2030 on urban heat islands: Part 2. Influence of global warming. Sustain. Cities Soc. 2017, 31, 95–108. [Google Scholar] [CrossRef]
- Fan, P.; Liu, C.; Luo, W.; Jiang, X. Can a group elicit duets from its neighbours? A field study on the black-crested gibbon (Nomascus concolor jingdongensis) in Central Yunnan, China. Folia Primatol. 2007, 78, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Houghton, R.A.; House, J.I.; Pongratz, J.; Van Der Werf, G.R.; Defries, R.S.; Hansen, M.C.; Le Quéré, C.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar] [CrossRef] [Green Version]
- Loi, N.K. Assessing the impacts of land use/land cover changes and practices on water discharge and sedimentation using SWAT: Case study in Dong Nai watershed—Vietnam. In Proceedings of the International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Hanoi, Vietnam, 9–11 December 2010. [Google Scholar]
- Serpa, D.; Nunes, J.P.; Santos, J.; Sampaio, E.; Jacinto, R.; Veiga, S.; Lima, J.C.; Moreira, M.; Corte-Real, J.; Keizer, J.J.; et al. Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Sci. Total Environ. 2015, 538, 64–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nation Development Programme Sustainable Development Goals. United Nation 2015, 1. [CrossRef]
- Mayaux, P.; Eva, H.; Gallego, J.; Strahler, A.H.; Herold, M.; Agrawal, S.; Naumov, S.; De Miranda, E.E.; Di Bella, C.M.; Ordoyne, C.; et al. Validation of the global land cover 2000 map. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1728–1737. [Google Scholar] [CrossRef]
- Bontemps, S.; Defourny, P.; Van Bogaert, E.; Kalogirou, V.; Perez, J.R. GLOBCOVER 2009 Products Description and Validation Report. ESA Bull. 2011, 136, 53. [Google Scholar]
- Scepan, J.; Estes, J.E. Thematic validation of global land cover data sets-procedures and interpretation methods. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium (IGARSS ’01), Sydney, NSW, Australia, 9–13 July 2001; Volume 3, pp. 1119–1121. [Google Scholar]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Stubenrauch, C.J.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Di Girolamo, L.; Getzewich, B.; Guignard, A.; Heidinger, A.; et al. Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bull. Am. Meteorol. Soc. 2013, 94, 1031–1049. [Google Scholar] [CrossRef]
- Arvidson, T.; Goward, S.N.; Gasch, J.; Williams, D. Landsat-7 long-term acquisition plan: Development and validation. Photogramm. Eng. Remote Sens. 2006, 72, 1137–1146. [Google Scholar] [CrossRef]
- Senf, C.; Leitão, P.J.; Pflugmacher, D.; van der Linden, S.; Hostert, P. Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery. Remote Sens. Environ. 2015, 156, 527–536. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring rice agriculture across myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote Sens. 2017, 9, 119. [Google Scholar] [CrossRef]
- Torbick, N.; Ledoux, L.; Salas, W.; Zhao, M. Regional mapping of plantation extent using multisensor imagery. Remote Sens. 2016, 8, 236. [Google Scholar] [CrossRef]
- Jhonnerie, R.; Siregar, V.P.; Nababan, B.; Prasetyo, L.B.; Wouthuyzen, S. Random Forest Classification for Mangrove Land Cover Mapping Using Landsat 5 TM and Alos Palsar Imageries. Procedia Environ. Sci. 2015, 24, 215–221. [Google Scholar] [CrossRef]
- Laurin, G.V.; Liesenberg, V.; Chen, Q.; Guerriero, L.; Del Frate, F.; Bartolini, A.; Coomes, D.; Wilebore, B.; Lindsell, J.; Valentini, R. Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 7–16. [Google Scholar] [CrossRef]
- Wijaya, A.; Gloaguen, R. Fusion of ALOS Palsar and Landsat ETM data for land cover classification and biomass modeling using non-linear methods. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Chen, B.; Torbick, N.; Jin, C.; Zhang, G.; Biradar, C. Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sens. Environ. 2013, 134, 392–402. [Google Scholar] [CrossRef]
- Reiche, J.; Souza, C.M.; Hoekman, D.H.; Verbesselt, J.; Persaud, H.; Herold, M. Feature Level Fusion of Multi-Temporal ALOS PALSAR and Landsat Data for Mapping and Monitoring of Tropical Deforestation and Forest Degradation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2159–2173. [Google Scholar] [CrossRef]
- Zhou, T.; Li, Z.; Pan, J. Multi-feature classification of multi-sensor satellite imagery based on dual-polarimetric sentinel-1A, landsat-8 OLI, and hyperion images for urban land-cover classification. Sensors (Switzerland) 2018, 18, 373. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Blackburn, G.A.; Onojeghuo, A.O.; Dash, J.; Zhou, L.; Zhang, Y.; Atkinson, P.M. Fusion of Landsat 8 OLI and Sentinel-2 MSI Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3885–3899. [Google Scholar] [CrossRef]
- Vafaei, S.; Soosani, J.; Adeli, K.; Fadaei, H.; Naghavi, H.; Pham, T.D.; Bui, D.T. Improving accuracy estimation of Forest Aboveground Biomass based on incorporation of ALOS-2 PALSAR-2 and Sentinel-2A imagery and machine learning: A case study of the Hyrcanian forest area (Iran). Remote Sens. 2018, 10, 172. [Google Scholar] [CrossRef]
- Pham, T.D.; Yoshino, K.; Le, N.N.; Bui, D.T. Estimating aboveground biomass of a mangrove plantation on the Northern coast of Vietnam using machine learning techniques with an integration of ALOS-2 PALSAR-2 and Sentinel-2A data. Int. J. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Reiche, J.; Lucas, R.; Mitchell, A.L.; Verbesselt, J.; Hoekman, D.H.; Haarpaintner, J.; Kellndorfer, J.M.; Rosenqvist, A.; Lehmann, E.A.; Woodcock, C.E.; et al. Combining satellite data for better tropical forest monitoring. Nat. Clim. Chang. 2016, 6, 120–122. [Google Scholar] [CrossRef]
- Lehmann, E.A.; Caccetta, P.; Lowell, K.; Mitchell, A.; Zhou, Z.S.; Held, A.; Milne, T.; Tapley, I. SAR and optical remote sensing: Assessment of complementarity and interoperability in the context of a large-scale operational forest monitoring system. Remote Sens. Environ. 2015, 156, 335–348. [Google Scholar] [CrossRef]
- De Alban, J.D.T.; Connette, G.M.; Oswald, P.; Webb, E.L. Combined Landsat and L-band SAR data improves land cover classification and change detection in dynamic tropical landscapes. Remote Sens. 2018, 10, 306. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Mitigation of Climate Change; IPCC: Geneva, Switzerland, 2014; ISBN 9781107654815. [Google Scholar]
- Hibbard, K.; Janetos, A.; Van Vuuren, D.P.; Pongratz, J.; Rose, S.K.; Betts, R.; Herold, M.; Feddema, J.J. Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling. Int. J. Climatol. 2010, 30, 2118–2128. [Google Scholar] [CrossRef] [Green Version]
- Jepsen, M.R.; Levin, G. Semantically based reclassification of Danish land-use and land-cover information. Int. J. Geogr. Inf. Sci. 2013, 27, 2375–2390. [Google Scholar] [CrossRef]
- Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.H.; Golubiewski, N.; et al. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene 2015, 12, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Di Gregorio, A.; Jansen, L.J. Land Cover Classification System. Classification Concepts and User Manual; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005; ISBN 92-5-105327-8. [Google Scholar]
- Hoang, T.T.; Nasahara, K. Analysis of Land Cover Changes in Northern Vietnam Using High Resolution Remote Sensing Data. Adv. Appl. Geospatial Technol. Earth Resour. 2017, 1. [Google Scholar] [CrossRef]
- Heydari, S.S.; Mountrakis, G. Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites. Remote Sens. Environ. 2018, 204, 648–658. [Google Scholar] [CrossRef]
- Knight, E.J.; Kvaran, G. Landsat-8 operational land imager design, characterization and performance. Remote Sens. 2014, 6, 10286–10305. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Parmes, E.; Rauste, Y.; Molinier, M.; Andersson, K.; Seitsonen, L. Automatic cloud and shadow detection in optical satellite imagery without using thermal bands-application to Suomi NPP VIIRS images over Fennoscandia. Remote Sens. 2017, 9, 806. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Csiszar, I. Early evaluation of the VIIRS calibration, cloud mask and surface reflectance Earth data records. Remote Sens. Environ. 2014, 148, 134–145. [Google Scholar] [CrossRef]
- Zhou, L.; Divakarla, M.; Liu, X. An overview of the joint polar satellite system (JPSS) science data product calibration and validation. Remote Sens. 2016, 8, 139. [Google Scholar] [CrossRef]
- Piper, M.; Bahr, T. A rapid cloud mask algorithm for suomi npp VIIRS imagery EDRS. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 2015, 40, 237–242. [Google Scholar] [CrossRef]
- As-syakur, A.R.; Adnyana, I.W.S.; Arthana, I.W.; Nuarsa, I.W. Enhanced built-UP and bareness index (EBBI) for mapping built-UP and bare land in an urban area. Remote Sens. 2012, 4, 2957–2970. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Kawamura, M.; Jayamana, S.; Tsujiko, Y. Relation between social and environmental conditions in Colombo Sri Lanka and the urban index estimated by satellite remote sensing data. Int. Arch. Photogram. Remote Sens. 1996, 31, 321–326. [Google Scholar]
- Zhao, H.M.; Chen, X.L. Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium (IGARSS ’05), Seoul, Korea, 29–29 July 2005; Volume 3, pp. 1666–1668. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI— A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Kou, W.; Xiao, X.; Dong, J.; Gan, S.; Zhai, D.; Zhang, G.; Qin, Y.; Li, L. Mapping deciduous rubber plantation areas and stand ages with PALSAR and landsat images. Remote Sens. 2015, 7, 1048–1073. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Salas, W.; Moore, I.; Li, C.; He, L.; Zhao, R. Landscape-scale characterization of cropland in China using Vegetation and Landsat TM images. Int. J. Remote Sens. 2002, 23, 3579–3594. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Xiao, X.; Sheldon, S.; Biradar, C.; Xie, G. Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery. ISPRS J. Photogramm. Remote Sens. 2012, 74, 20–33. [Google Scholar] [CrossRef]
- Chen, B.; Li, X.; Xiao, X.; Zhao, B.; Dong, J.; Kou, W.; Qin, Y.; Yang, C.; Wu, Z.; Sun, R.; et al. Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 117–130. [Google Scholar] [CrossRef]
- Barsi, J.A.; Lee, K.; Kvaran, G.; Markham, B.L.; Pedelty, J.A. The spectral response of the Landsat-8 operational land imager. Remote Sens. 2014, 6, 10232–10251. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Tadono, T.; Shimada, M.; Takaku, J.; Murakami, H. Update calibration results of prism and AVNIR-2 onboard ALOS “Daichi”. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2012. [Google Scholar]
- Lee, J.S.; Jurkevich, I.; Dewaele, P.; Wambacq, P.; Oosterlinck, A. Speckle filtering of synthetic aperture radar images: A review. Remote Sens. Rev. 1994, 8, 313–340. [Google Scholar] [CrossRef]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Hashimoto, S.; Tadono, T.; Onosato, M.; Hori, M. Land use and land cover inference in large areas using multi-temporal optical satellite images. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013. [Google Scholar]
- Jordan, M.; Kleinberg, J.; Schölkopf, B. Pattern Recognition and Machine Learning, 1st ed.; Springer Science+Business Media, LLC: New York, NY, USA, 2006; pp. 122–123. ISBN 9780387310732. [Google Scholar]
- Katagi, J.; Nishida Nasahara, K.; Kobayashi, K.; Dotsu, M.; Tadono, T. Reduction of misclassification by mountain shadow processing in high resolution land use/land cover map using multi-period optical observation image. J. Remote Sens. Soc. Jpn. 2018, 38, 1–5. [Google Scholar]
- Ishihara, M.; Tadono, T. Land cover changes induced by the great east Japan earthquake in 2011. Sci. Rep. 2017. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, S.; Tadono, T.; Onosato, M.; Hori, M.; Moriyama, T. Probabilistic land cover classification approach toward knowledge-based satellite data interpretations. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2012; pp. 1513–1516. [Google Scholar]
- Ozesmi, S.L.; Bauer, M.E. Satellite remote sensing of wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Lewis, H.G.; Brown, M. A generalized confusion matrix for assessing area estimates from remotely sensed data. Int. J. Remote Sens. 2001, 22, 3223–3235. [Google Scholar] [CrossRef] [Green Version]
- Markham, K. Simple guide to confusion matrix terminology. Data School, 25 March 2014. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20. [Google Scholar] [CrossRef]
- Dung, B.T.; Madsen, H.; The, D.T. Distribution of freshwater snails in family-based VAC ponds and associated waterbodies with special reference to intermediate hosts of fish-borne zoonotic trematodes in Nam Dinh Province, Vietnam. Acta Trop. 2010, 116, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Dang, S.T.T.; Dalsgaard, A. Escherichia coli Contamination of Fish Raised in Integrated Pig-Fish Aquaculture Systems in Vietnam. J. Food Prot. 2012, 75, 1317–1319. [Google Scholar] [CrossRef] [PubMed]
- Ozdarici-Ok, A.; Ok, A.O.; Schindler, K. Mapping of agricultural crops from single high-resolution multispectral images-data-driven smoothing vs. parcel-based smoothing. Remote Sens. 2015, 7, 5611–5638. [Google Scholar] [CrossRef]
- Schmedtmann, J.; Campagnolo, M.L. Reliable crop identification with satellite imagery in the context of Common Agriculture Policy subsidy control. Remote Sens. 2015, 7, 9325–9346. [Google Scholar] [CrossRef]
- Quegan, S.; Yu, J.J. Filtering of multichannel SAR images. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2373–2379. [Google Scholar] [CrossRef]
- Lopes, A.; Touzi, R.; Nezry, E. Adaptive Speckle Filters and Scene Heterogeneity. IEEE Trans. Geosci. Remote Sens. 1990, 28, 992–1000. [Google Scholar] [CrossRef]
- Maghsoudi, Y.; Collins, M.J.; Leckie, D. Speckle reduction for the forest mapping analysis of multi-temporal Radarsat-1 images. Int. J. Remote Sens. 2012, 33, 1349–1359. [Google Scholar] [CrossRef]
- Phuc, N.Q.; van Westen, A.C.M.; Zoomers, A. Agricultural land for urban development: The process of land conversion in Central Vietnam. Habitat Int. 2014, 41, 1–7. [Google Scholar] [CrossRef]
- Brauw, A. Seasonal migration and agricultural production in Vietnam. J. Dev. Stud. 2010, 46, 114–139. [Google Scholar] [CrossRef]
- Khoi, D.D.; Murayama, Y. Forecasting areas vulnerable to forest conversion in the tam Dao National Park region, Vietnam. Remote Sens. 2010, 2, 1249–1272. [Google Scholar] [CrossRef]
- Miettinen, J.; Shi, C.; Liew, S.C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Chang. Biol. 2011, 17, 2261–2270. [Google Scholar] [CrossRef]
- Nambiar, E.S.; Harwood, C.E.; Kien, N.D. Acacia plantations in Vietnam: Research and knowledge application to secure a sustainable future. South. For. 2015. [Google Scholar]
- Dao Minh, T.; Yanagisawa, M.; Kono, Y. Forest transition in Vietnam: A case study of Northern mountain region. For. Policy Econ. 2017, 76, 72–80. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2015; FAO: Rome, Italy, 2015; ISBN 9789251088210. [Google Scholar]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.; Nunn, P.D.; et al. Sea level change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- FitzGerald, D.M.; Fenster, M.S.; Argow, B.A.; Buynevich, I.V. Coastal Impacts Due to Sea-Level Rise. Annu. Rev. Earth Planet. Sci. 2008, 36, 601–647. [Google Scholar] [CrossRef] [Green Version]
- Cazenave, A.; Llovel, W. Contemporary Sea Level Rise. Ann. Rev. Mar. Sci. 2010, 2, 145–173. [Google Scholar] [CrossRef] [PubMed]
- Rahneshan, Z.; Nasibi, F.; Moghadam, A.A. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J. Plant Interact. 2018, 13, 73–82. [Google Scholar] [CrossRef]
- Abdul Qados, A.M.S. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J. Saudi Soc. Agric. Sci. 2011, 10, 7–15. [Google Scholar] [CrossRef]
- Homer, C.G.; Dewitz, J.A.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.D.; Wickham, J.D.; Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar] [CrossRef]
- Homer, C.G.C.; Dewitz, J.A.J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.D.N.; Wickham, J.D.J.; Megown, K.; et al. Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sens. 2011, 77, 858–864. [Google Scholar]
Code | Categories | Definition |
---|---|---|
W | Water | Oceans, seas, lakes, reservoirs, and rivers. They can be either fresh or saltwater bodies. |
U | Urban | Land covered by buildings and other man-made structures. |
P | Paddy | The cover type is rice paddy and is influenced by the presence of water. |
C | Crop | Lands covered with temporary crops followed by harvest and a bare soil period (e.g., single and multiple cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub land cover type. |
G | Grass | Lands with herbaceous types of cover. Tree and shrub cover is less than 10%. |
O | Orchard | An orchard is an intentional planting of trees or shrubs that is maintained for food production. |
B | Bare land | Lands with exposed soil, sand, rocks, or snow and that have never had more than 10% vegetated cover during any time of the year. |
F | Forest | Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 m. Almost all trees and shrubs remain green year round. Canopy is never without green foliage. |
M | Mangrove | Mangroves are a group of trees and shrubs that live in the coastal intertidal zone. |
Os | Others | The other land cover categories |
Sensor Type | Year of Acquisition | Image/Position | Spatial Resolutions (m) | Temporal Resolution |
---|---|---|---|---|
Sentinel 2 | 2017 | 10 | 10 and 60 | 10 days |
Landsat 8 OLI | 2017 | 8 | 30 | 16 days |
ALOS AVNIR-2 | 2007 | 5 | 10 | 46 days |
Landsat 7 ETM+ | 2007 | 5 | 30 | 16 days |
Landsat 5 TM | 2007 | 5 | 30 | 16 days |
ALOS PALSAR Mosaic | 2007 | 1 | 25 | 1 year |
ALOS-2 PALSAR-2 Mosaic | 2017 | 1 | ||
SRTM 1 Arc-Second Global | ||||
2000 | 1 | 30 | - | |
Open street map | - | 1 | - | - |
Data | Channel | Spectral Range (μm) | Electromagnetic Region |
---|---|---|---|
Landsat 8 | Band 1 | 0.435–0.451 | Coastal Aerosol |
Band 2 | 0.452–0.512 | Visual Blue (VBlue) | |
Band 3 | 0.533–0.590 | Visible Green (VGreen) | |
Band 4 | 0.636–0.673 | Visible Red (VRed) | |
Band 5 | 0.851–0.879 | Near Infrared (NIR) | |
Band 6 | 1.566–1.651 | Short Wave Infrared (SWIR1) | |
Band 7 | 2.107–2.294 | Short Wave Infrared (SWIR2) | |
Band 10 | 10.60–11.19 | Thermal Infrared (TIR) | |
Landsat 5 and 7 | Band 1 | 0.45–0.52 | Visual Blue (VBlue) |
Band 2 | 0.52–0.60 | Visible Green (VGreen) | |
Band 3 | 0.63–0.69 | Visible Red (VRed) | |
Band 4 | 0.77–0.90 | Near Infrared (NIR) | |
Band 5 | 1.55–1.75 | Short Wave Infrared (SWIR1) | |
Band 6 | 10.40–12.50 | Thermal Infrared (TIR) | |
Band 7 | 2.09–2.35 | Short Wave Infrared (SWIR2) | |
Sentinel 2 | Band 1 | 0.433–0.453 | Coastal Aerosol |
Band 2 | 0.458–0.522 | Visual Blue (VBlue) | |
Band 3 | 0.543–0.578 | Visible Green (VGreen) | |
Band 4 | 0.650–0.680 | Visible Red (VRed) | |
Band 8 | 0.785–0.899 | Near Infrared (NIR) | |
ALOS AVNIR-2 | Band 1 | 0.42–0.50 | Visual Blue (VBlue) |
Band 2 | 0.52–0.60 | Visible Green (VGreen) | |
Band 3 | 0.61–0.69 | Visible Red (VRed) | |
Band 4 | 0.76–0.89 | Near Infrared (NIR) |
Predicted Category | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Actual Category | W | U | P | C | G | O | B | F | M | Total | PA (%) | |
W | 644 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 11 | 659 | 97.8 | |
U | 0 | 1005 | 3 | 64 | 31 | 76 | 2 | 0 | 0 | 1181 | 85.1 | |
P | 0 | 6 | 1138 | 12 | 3 | 2 | 15 | 2 | 58 | 1236 | 92.1 | |
C | 0 | 12 | 8 | 1123 | 73 | 105 | 6 | 6 | 2 | 1335 | 84.2 | |
G | 0 | 6 | 0 | 4 | 377 | 5 | 1 | 0 | 0 | 393 | 96 | |
O | 0 | 8 | 2 | 34 | 11 | 637 | 0 | 45 | 0 | 737 | 86.5 | |
B | 0 | 7 | 0 | 1 | 1 | 1 | 496 | 0 | 0 | 506 | 98.1 | |
F | 1 | 0 | 1 | 0 | 1 | 60 | 0 | 986 | 0 | 1049 | 94 | |
M | 23 | 0 | 16 | 0 | 2 | 0 | 0 | 0 | 495 | 536 | 92.4 | |
Total | 668 | 1044 | 1172 | 1238 | 499 | 886 | 520 | 1039 | 566 | 7632 | 91.8 | |
UA (%) | 96.5 | 96.3 | 97.1 | 90.8 | 75.6 | 71.9 | 95.4 | 94.9 | 87.5 | 89.6 | 90.5 | |
Ka | 0.02 | 0.05 | 0.02 | 0.02 | 0 | 0 | 0.01 | 0.03 | 0 | 0.15 | 0.9 |
Predicted Category | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Actual Category | W | U | P | C | G | O | B | F | M | Total | PA (%) | |
W | 2636 | 2 | 1 | 0 | 4 | 0 | 0 | 0 | 2 | 2645 | 99.7 | |
U | 0 | 1799 | 1 | 70 | 58 | 75 | 17 | 0 | 0 | 2020 | 89.1 | |
P | 5 | 0 | 2971 | 17 | 0 | 11 | 0 | 28 | 19 | 3051 | 97.4 | |
C | 2 | 33 | 157 | 2454 | 181 | 171 | 0 | 28 | 48 | 3074 | 79.9 | |
G | 84 | 74 | 7 | 107 | 1821 | 135 | 0 | 46 | 7 | 2281 | 79.9 | |
O | 1 | 12 | 4 | 153 | 72 | 765 | 0 | 54 | 8 | 1069 | 71.6 | |
B | 12 | 60 | 5 | 16 | 7 | 3 | 1264 | 0 | 0 | 1367 | 92.5 | |
F | 0 | 0 | 8 | 3 | 1 | 10 | 1 | 3291 | 0 | 3314 | 99.4 | |
M | 7 | 3 | 5 | 2 | 2 | 1 | 1 | 22 | 781 | 824 | 94.8 | |
Total | 2747 | 1983 | 3159 | 2822 | 2146 | 1171 | 1283 | 3469 | 865 | 19645 | 89.4 | |
UA (%) | 96 | 90.8 | 94.1 | 87 | 84.9 | 65.4 | 98.6 | 94.9 | 90.3 | 89.1 | 90.6 | |
Ka | 0.02 | 0.01 | 0.02 | 0.02 | 0.01 | 0 | 0 | 0.03 | 0 | 0.13 | 0.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duong, P.C.; Trung, T.H.; Nasahara, K.N.; Tadono, T. JAXA High-Resolution Land Use/Land Cover Map for Central Vietnam in 2007 and 2017. Remote Sens. 2018, 10, 1406. https://doi.org/10.3390/rs10091406
Duong PC, Trung TH, Nasahara KN, Tadono T. JAXA High-Resolution Land Use/Land Cover Map for Central Vietnam in 2007 and 2017. Remote Sensing. 2018; 10(9):1406. https://doi.org/10.3390/rs10091406
Chicago/Turabian StyleDuong, Phan Cao, Ta Hoang Trung, Kenlo Nishida Nasahara, and Takeo Tadono. 2018. "JAXA High-Resolution Land Use/Land Cover Map for Central Vietnam in 2007 and 2017" Remote Sensing 10, no. 9: 1406. https://doi.org/10.3390/rs10091406
APA StyleDuong, P. C., Trung, T. H., Nasahara, K. N., & Tadono, T. (2018). JAXA High-Resolution Land Use/Land Cover Map for Central Vietnam in 2007 and 2017. Remote Sensing, 10(9), 1406. https://doi.org/10.3390/rs10091406