Teleconnections and Interannual Transitions as Observed in African Vegetation: 2015–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
2.2.1. Seasonal Normalized Difference Vegetation Index (NDVI) and Precipitation Composite Analysis
2.2.2. Temporal Evolution of Impacts Analysis
2.2.3. Spatial Correlation Analysis
2.2.4. Empirical Orthogonal Teleconnection Analysis
3. Results
3.1. Seasonal NDVI and Precipitation Composite Results
3.2. Temporal Evolution of Impacts Results
3.3. Spatial Correlation Results
3.4. Empirical Orthogonal Teleconnections (EOT) Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an Integrating Concept in Earth Science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- David Neelin, J.; Latif, M. El Niño Dynamics. Phys. Today 1998, 51, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E. The Definition of El Niño. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2777. [Google Scholar] [CrossRef] [Green Version]
- Ropelewski, C.; Halpert, M.S. Global and Regional Scale Precipitation Patterns Associated with the El Niño/Southern Oscillation. Mon. Weather Rev. 1987, 115, 1606–1626. [Google Scholar] [CrossRef] [Green Version]
- Myneni, R.B.; Los, S.O.; Tucker, C.J. Satellite-based identifiction of linked vegetation index and sea surface temperature anomaly areas from 1982–1990 for Africa, Australia, and South America. Geophys. Res. Lett. 1996, 23, 729–732. [Google Scholar] [CrossRef]
- Anyamba, A.; Eastman, J.R. Interannual variability of NDVI over Africa and its relation to El Niño/Southern Oscillation. Int. J. Remote Sens. 1996, 17, 2533–2548. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Kim, J. The Relationship of the El Niño–Southern Oscillation To African Rainfall. Int. J. Climatol. 1997, 17, 117–135. [Google Scholar] [CrossRef]
- Anyamba, A.; Tucker, C.J.; Mahoney, R. From El Niño to La Niña: Vegetation response patterns over east and southern Africa during the 1997–2000 period. J. Clim. 2002, 15, 3096–3103. [Google Scholar] [CrossRef]
- Philippon, N.; Martiny, N.; Camberlin, P.; Hoffman, M.T.; Gond, V. Timing and patterns of the ENSO signal in Africa over the last 30 years: Insights from Normalized Difference Vegetation Index Data. J. Clim. 2014, 27, 2509–2532. [Google Scholar] [CrossRef]
- Parhi, P.; Giannini, A.; Gentine, P.; Lall, U. Resolving contrasting regional rainfall responses to EL Niño over tropical Africa. J. Clim. 2016, 29, 1461–1476. [Google Scholar] [CrossRef]
- Martiny, N.; Richard, Y.; Camberlin, P. Interannual persistence effects in vegetation dynamics of semi-arid Africa. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Birkett, C.; Murtugudde, R.; Allan, T. Indian Ocean climate event brings floods to East Africa’s lakes and the Sudd marsh. Geophys. Res. Lett. 1999, 26, 1031–1034. [Google Scholar] [CrossRef]
- Williams, C.; Hanan, N.P. ENSO and IOD teleconnections for African ecosystems: Evidence of destructive interference between climate oscillations. Biogeosciences 2011, 8, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Saji, H.N.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Webster, P.J.; Moore, A.M.; Loschnigg, J.P.; Leben, R.R. Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 1999, 401, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, T.; Behera, S.K.; Rao, S.A.; Guan, Z.; Ashok, K.; Saji, H.N. Comments on “Dipoles, Temperature Gradients, and Tropical Climate Anomalies.”. Bull. Am. Meteorol. Soc. 2003, 84, 1418–1422. [Google Scholar] [CrossRef]
- Ashok, K.; Guan, Z.; Yamagata, T. A Look at the Relationship between the ENSO and the Indian Ocean Dipole. J. Meteorol. Soc. Jpn. 2003, 81, 41–56. [Google Scholar] [CrossRef]
- Behera, S.K.; Luo, J.J.; Masson, S.; Rao, S.A.; Sakuma, H.; Yamagata, T. A CGCM study on the interaction between IOD and ENSO. J. Clim. 2006, 19, 1688–1705. [Google Scholar] [CrossRef]
- Dommenget, D. An objective analysis of the observed spatial structure of the tropical Indian Ocean SST variability. Clim. Dyn. 2011, 36, 2129–2145. [Google Scholar] [CrossRef]
- Zhao, Y.; Nigam, S. The Indian ocean dipole: A monopole in SST. J. Clim. 2015, 28, 3–19. [Google Scholar] [CrossRef]
- Black, E. The relationship between Indian Ocean sea-surface temperature and East African rainfall. Philos. Trans. A. Math. Phys. Eng. Sci. 2005, 363, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Muñoz, J.C.; Mattar, C.; Barichivich, J.; Santamaría-Artigas, A.; Takahashi, K.; Malhi, Y.; Sobrino, J.A.; Schrier, G. van der Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 2016, 6, 33130. [Google Scholar] [CrossRef] [PubMed]
- Field, R.D.; van der Werf, G.R.; Fanin, T.; Fetzer, E.J.; Fuller, R.; Jethva, H.; Levy, R.; Livesey, N.J.; Luo, M.; Torres, O.; et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl. Acad. Sci. USA 2016, 113, 9204–9209. [Google Scholar] [CrossRef] [PubMed]
- Stige, L.C.; Stave, J.; Chan, K.-S.; Ciannelli, L.; Pettorelli, N.; Glantz, M.; Herren, H.R.; Stenseth, N.C. The effect of climate variation on agro-pastoral production in Africa. Proc. Natl. Acad. Sci. USA 2006, 103, 3049–3053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholson, S.E.; Davenport, M.L.; Malo, A.R. A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Clim. Chang. 1990, 17, 209–241. [Google Scholar] [CrossRef]
- Ichii, K.; Kawabata, A.; Yamaguchi, Y. Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990. Int. J. Remote Sens. 2002, 23, 3873–3878. [Google Scholar] [CrossRef]
- Martiny, N.; Camberlin, P.; Richard, Y.; Philippon, N. Compared regimes of NDVI and rainfall in semi-arid regions of Africa. Int. J. Remote Sens. 2006, 27, 5201–5223. [Google Scholar] [CrossRef]
- Richard, Y.; Poccard, I. A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in Southern Africa. Int. J. Remote Sens. 1998, 19, 2907–2920. [Google Scholar] [CrossRef]
- Andujar, E.; Krakauer, N.Y.; Yi, C.; Kogan, F. Ecosystem Drought Response Timescales from Thermal Emission Versus Shortwave Remote Sensing. Adv. Meteorol. 2017, 2017, 1–29. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q. Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations. ISPRS J. Photogramm. Remote Sens. 2016, 114, 191–205. [Google Scholar] [CrossRef]
- Glennie, E.; Anyamba, A. Midwest agriculture and ENSO: A comparison of AVHRR NDVI3g data and crop yields in the United States Corn Belt from 1982 to 2014. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 180–188. [Google Scholar] [CrossRef]
- Didan, K.; Munoz, A.B.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series); VIP Research Group, The University of Arizona: Tucson, AZ, USA, 2015; Volume 3. [Google Scholar]
- Pinzon, J.E.; Tucker, C.J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef]
- Love, T.B.; Kumar, V.; Xie, P.-P.; Thiaw, W.M. A 20-year daily Africa precipitation climatology using satellite and gauge data. In Proceedings of the 84th American Meteorological Society Annual Meeting, Seattle, WA, USA, 11–15 January 2004; pp. 5213–5216. [Google Scholar]
- Novella, N.S.; Thiaw, W.M. A seasonal rainfall performance probability tool for famine early warning systems. J. Appl. Meteorol. Climatol. 2016, 55, 2575–2586. [Google Scholar] [CrossRef]
- Huang, B.; Banzon, V.F.; Freeman, E.; Lawrimore, J.; Liu, W.; Peterson, T.C.; Smith, T.M.; Thorne, P.W.; Woodruff, S.D.; Zhang, H.M. Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Clim. 2015, 28, 911–930. [Google Scholar] [CrossRef]
- Japan Agency for Marine-Earth Science and Technology Indian Ocean Dipole Mode Index (DMI). Available online: http://www.jamstec.go.jp/frcgc/research/d1/iod/HTML/Dipole Mode Index.html (accessed on 1 September 2017).
- Rasmusson, E.M.; Carpenter, T.H. Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño. Mon. Weather Rev. 1982, 110, 354–384. [Google Scholar] [CrossRef] [Green Version]
- Rasmusson, E.M.; Wang, X.; Ropelewski, C.F. The biennial component of ENSO variability. J. Mar. Syst. 1990, 1, 71–96. [Google Scholar] [CrossRef]
- Van Den Dool, H.M.; Saha, S.; Johansson, Å. Empirical orthogonal teleconnections. J. Clim. 2000, 13, 1421–1435. [Google Scholar] [CrossRef]
- Mladenova, I.E.; Bolten, J.D.; Crow, W.T.; Anderson, M.C.; Hain, C.R.; Johnson, D.M.; Mueller, R. Intercomparison of Soil Moisture, Evaporative Stress, and Vegetation Indices for Estimating Corn and Soybean Yields over the U.S. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1328–1343. [Google Scholar] [CrossRef]
- Singleton, A.T.; Reason, C.J.C. Numerical simulations of a severe rainfall event over the Eastern Cape coast of South Africa: Sensitivity to sea surface temperature and topography. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2006, 58, 355–367. [Google Scholar] [CrossRef]
- FAOSTAT. FAO Statistical Databases. Food and Agriculture; FAOSTAT: Rome, Italy, 2017. [Google Scholar]
- Kenya Grain and Feed Annual 2016 Kenya Corn, Wheat and Rice Report. Available online: http://gain.fas.usda.gov/Recent GAIN Publications/Grain and Feed Annual_Nairobi_Kenya_4-8-2014.pdf (accessed on 1 December 2017).
- Global Alert: Very Large Assistance Needs and Famine Risk Will Continue in 2018. Available online: http://www.fews.net/print/global/alert/november-28-2017 (accessed on 1 December 2017).
- Office of Global Analysis of Production Briefs, Crop Explorer Production Briefs—Southern Africa. Available online: https://ipad.fas.usda.gov/cropexplorer/pecad_stories.aspx?regionid=safrica&ftype=prodbriefs (accessed on 15 January 2018).
- Yeh, S.W.; Kug, J.S.; An, S. Il Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pac. J. Atmos. Sci. 2014, 50, 69–81. [Google Scholar] [CrossRef]
- Takahashi, K.; Montecinos, A.; Goubanova, K.; Dewitte, B. ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef]
- Jeong, H.I.; Ahn, J.B. A new method to classify ENSO events into eastern and central Pacific types. Int. J. Climatol. 2017, 37, 2193–2199. [Google Scholar] [CrossRef]
- Kao, H.Y.; Yu, J.Y. Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Clim. 2009, 22, 615–632. [Google Scholar] [CrossRef]
Eastern Africa [35E–40E, 2S–2N] | Southern Africa [19E–32E, 28S–20S] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Precipitation | NDVI | Precipitation | NDVI | |||||||||
Lag | R | r2 | p-Value | R | r2 | p-Value | R | r2 | p-Value | R | r2 | p-Value |
No lag | 0.56 | 0.31 | <0.05 | 0.52 | 0.27 | <0.05 | 0.37 | 0.14 | >0.05 | 0.46 | 0.22 | >0.05 |
1 month | 0.54 | 0.29 | <0.05 | 0.63 | 0.40 | <0.05 | 0.42 | 0.18 | <0.05 | 0.53 | 0.28 | >0.05 |
2 month | 0.54 | 0.29 | <0.05 | 0.70 | 0.49 | <0.05 | 0.41 | 0.17 | <0.05 | 0.57 | 0.32 | >0.05 |
3 month | 0.53 | 0.28 | <0.05 | 0.77 | 0.59 | <0.05 | 0.42 | 0.18 | <0.05 | 0.60 | 0.35 | <0.05 |
4 month | 0.47 | 0.22 | <0.05 | 0.80 | 0.63 | <0.05 | 0.37 | 0.14 | >0.05 | 0.61 | 0.37 | <0.05 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anyamba, A.; Glennie, E.; Small, J. Teleconnections and Interannual Transitions as Observed in African Vegetation: 2015–2017. Remote Sens. 2018, 10, 1038. https://doi.org/10.3390/rs10071038
Anyamba A, Glennie E, Small J. Teleconnections and Interannual Transitions as Observed in African Vegetation: 2015–2017. Remote Sensing. 2018; 10(7):1038. https://doi.org/10.3390/rs10071038
Chicago/Turabian StyleAnyamba, Assaf, Erin Glennie, and Jennifer Small. 2018. "Teleconnections and Interannual Transitions as Observed in African Vegetation: 2015–2017" Remote Sensing 10, no. 7: 1038. https://doi.org/10.3390/rs10071038
APA StyleAnyamba, A., Glennie, E., & Small, J. (2018). Teleconnections and Interannual Transitions as Observed in African Vegetation: 2015–2017. Remote Sensing, 10(7), 1038. https://doi.org/10.3390/rs10071038