Decision Fusion of D-InSAR and Pixel Offset Tracking for Coal Mining Deformation Monitoring
Abstract
:1. Introduction
2. Study Area and Datasets
3. Methodology
3.1. Monitoring Surface Deformation Using D-InSAR
3.2. Monitoring Surface Deformation Using MT-InSAR Methods
3.3. Monitoring Surface Deformation Using Offset Tracking
3.4. Decision Fusion
- (a)
- The pixel offset tracking result was 0 because of low coherence, so we used the D-InSAR result directly.
- (b)
- If the value of was less than or equal to 3, then it was directly assigned to the D-InSAR results because its result has higher accuracy.
- (c)
- If the value of was greater than 8 (in order to ensure reliability, we took the maximum of one-quarter for the breakpoint) and its pixel offset tracking value was less than the minimum subsidence of the D-InSAR result, then the fusion output was the pixel offset tracking result, . In the case of large-scale deformation, the pixel offset tracking method provided better performance.
- (d)
- If the pixel offset tracking result was positive while the D-InSAR result was negative, then the D-InSAR result was used because, in this case, most of the mining area is subsiding. In addition, since the accuracy of the D-InSAR result is higher, when its value was less than the offset tracking result, we used the D-InSAR result.
- (e)
- For the remaining cases, since both the D-InSAR and offset tracking methods produce low accuracies, a proportional combination needed to be calculated.
4. Results
4.1. Results of the D-InSAR Method
4.2. Results of the MT-InSAR Methods
4.3. Results of the Pixel Offset Tracking
4.4. Results of the Fusion Method
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, G. Research on ruptured rock mass deformation characteristics of longwall goafs. Sci. Technol. Eng. 2002, 2, 44–47. [Google Scholar]
- Vanicek, P.; Castle, R.O.; Balazs, E.I. Geodetic leveling and its applications. Rev. Geophys. 1980, 18, 505–524. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. Atmos. 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, 12–13. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2002, 88, 333–382. [Google Scholar] [CrossRef]
- Graham, L.C. Synthetic interferometer radar for topographic mapping. Proc. IEEE 1974, 62, 763–768. [Google Scholar] [CrossRef]
- Zebker, H.A.; Goldstein, R.M. Topographic mapping from interferometric synthetic aperture radar observations. J. Geophys. Res. 1986, 91, 4993–4999. [Google Scholar] [CrossRef]
- Zhong, L.; Mann, D.; Freymueller, J.T.; Meyer, D.J. Synthetic aperture radar interferometry of Okmok volcano, Alaska: Radar observations. J. Geophys. Res. Solid Earth 2000, 105, 10791–10806. [Google Scholar] [Green Version]
- Chen, Y.; Peltier, A.; Remy, D.; Perfettini, H.; Froger, J.L.; Darrozes, J.; Villeneuve, N.; Bonvalot, S. Long-term ground displacement observations using InSAR and GNSS at Piton de la Fournaise volcano between 2009 and 2014. Remote Sens. Environ. 2017, 194, 230–247. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Ye, X.; Kaufmann, H.; Guo, X.F. Landslide monitoring in the three gorges area using D-InSAR and corner reflectors. Photogramm. Eng. Remote Sens. 2004, 70, 1167–1172. [Google Scholar] [CrossRef]
- Ng, H.M.; Ge, L.; Yan, Y.; Li, X.; Chang, H.C.; Zhang, K.; Rizos, C. Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of New South Wales, Australia. Eng. Geol. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Chang, H.C.; Ge, L.; Rizos, C. DInSAR for mine subsidence monitoring using multi-source satellite SAR images. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium (IGARSS ’05), Seoul, South Korea, 29 July 2005; pp. 1742–1745. [Google Scholar]
- Ng, H.M.; Chang, H.C.; Ge, L.; Rizos, C.; Omura, M. Assessment of radar interferometry performance for ground subsidence monitoring due to underground mining. Earth Planets Space 2009, 61, 733–745. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Lu, Z.; Zhang, Q.; Yang, C.; Zhu, W. Mining collapse monitoring with SAR imagery data: A case study of Datong mine, China. J. Appl. Remote Sens. 2014, 8, 083574. [Google Scholar] [CrossRef]
- Michel, R.; Avouac, J.P.; Taboury, J. Measuring ground displacements from SAR amplitude images: Application to the Landers Earthquake. Geophys. Res. Lett. 1999, 26, 875–878. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.M.; Zebker, H.A.; Werner, C.L. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Sci. 1988, 23, 713–720. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium (IGARSS ’99), Hamburg, Germany, 28 June–2 July 1999; Volume 3, pp. 1528–1530. [Google Scholar]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric Radar Echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry; Kluwer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Arciniegas, G.A.; Bijker, W.; Kerle, N.; Tolpekin, V.A. Coherence and amplitude-based analysis of seismogenic damage in Bam, Iran, using Envisat ASAR data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1571–1581. [Google Scholar] [CrossRef]
- Solari, L.; Raspini, F.; Del Soldato, M.; Bianchini, S.; Ciampalini, A.; Ferrigno, F.; Tucci, S.; Casagli, N. Satellite radar data for back-analyzing a landslide event: The Ponzano (Central Italy) case study. Landslides 2018, 15, 773–782. [Google Scholar] [CrossRef]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmuller, U.; Werner, C.L. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Liu, G.; Wang, Y.; Ruan, Z. Accurate determination of glacier surface velocity fields with a dem-assisted pixel-tracking technique from SAR imagery. Remote Sens. 2015, 7, 10898–10916. [Google Scholar] [CrossRef]
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J.P. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1529–1558. [Google Scholar] [CrossRef]
- Scambos, T.A.; Dutkiewicz, M.J.; Wilson, J.C.; Bindschadler, R.A. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sens. Environ. 1992, 42, 177–186. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, L.; Balz, T.; Liao, M. Landslide deformation monitoring using point-like target offset tracking with multi-mode high-resolution TerraSAR-X data. ISPRS J. Photogramm. Remote Sens. 2015, 105, 128–140. [Google Scholar] [CrossRef]
- Singleton, A.; Li, Z.; Hoey, T.; Muller, J.P. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens. Environ. 2014, 147, 133–144. [Google Scholar] [CrossRef]
- Casu, F.; Manconi, A.; Pepe, A.; Lanari, R. Deformation time-series generation in areas characterized by large displacement dynamics: The SAR amplitude pixel-offset SBAS technique. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2752–2763. [Google Scholar] [CrossRef]
- Andrea, M.; Francesco, C. Joint analysis of displacement time series retrieved from SAR phase and amplitude: Impact on the estimation of volcanic source parameters. Geophys. Res. Lett. 2012, 39, 956–957. [Google Scholar]
- Erten, E.; Reigber, A.; Hellwich, O.; Prats, P. Glacier velocity monitoring by maximum likelihood texture tracking. IEEE Trans. Geosci. Remote Sens. 2009, 47, 394–405. [Google Scholar] [CrossRef] [Green Version]
- Samsonov, S.; Tiampo, K. Analytical optimization of a DInSAR and GPS dataset for derivation of three-dimensional surface motion. IEEE Geosci. Remote Sens. Lett. 2006, 3, 107–111. [Google Scholar] [CrossRef]
- Currenti, G.; Napoli, R.; Negro, C.D. Toward a realistic deformation model of the 2008 magmatic intrusion at etna from combined DInSAR and GPS observations. Earth Planet. Sci. Lett. 2011, 312, 22–27. [Google Scholar] [CrossRef]
- Yan, Y.; Trouvé, E.; Pinel, V.; Mauris, G.; Pathier, E.; Galichet, S. Fusion of D-InSAR and sub-pixel image correlation measurements for coseismic displacement field estimation: Application to the Kashmir earthquake (2005). Int. J. Image Data Fusion 2012, 3, 71–92. [Google Scholar] [CrossRef]
- Baran, I.; Stewart, M.; Claessens, S. A new functional model for determining minimum and maximum detectable deformation gradient resolved by satellite radar interferometry. IEEE Trans. Geosci. Remote Sens. 2005, 43, 675–682. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2011, 514, 1–13. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Atmos. 2007, 112, B07407. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Strozzi, T.; Wegmuller, U.; Keusen, H.R.; Graf, K.; Wiesmann, A. Analysis of the terrain displacement along a funicular by SAR interferometry. IEEE Geosci. Remote Sens. Lett. 2006, 3, 15–18. [Google Scholar] [CrossRef]
- Chen, B.; Deng, K.; Fan, H.; Hao, M. Large-scale deformation monitoring in mining area by D-InSAR and 3D laser scanning technology integration. Int. J. Min. Sci. Technol. 2013, 23, 555–561. [Google Scholar] [CrossRef]
- Giles, A.B.; Massom, R.A.; Warner, R.C. A method for sub-pixel scale feature-tracking using RadarSAT images applied to the Mertz Glacier Tongue, East Antarctica. Remote Sens. Environ. 2009, 113, 1691–1699. [Google Scholar] [CrossRef]
- Debella-Gilo, M.; Kääb, A. Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation. Remote Sens. Environ. 2011, 115, 130–142. [Google Scholar] [CrossRef] [Green Version]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
Mode | Pass/Look Direction | Incidence Angle | Orbit | Polarization | Range of Pixel Spacing | Azimuth Pixel Spacing |
---|---|---|---|---|---|---|
SpotLight | Descending/right look | ~28.69° | 28 | HH | ~0.909 m | ~1.896 m |
Master Image | Slave Image | Perpendicular Baseline (m) | Master Image | Slave Image | Perpendicular Baseline (m) |
---|---|---|---|---|---|
09 June 2015 | 20 June 2015 | 150 | 27 September 2015 | 08 October 2015 | −102 |
20 June 2015 | 01 July 2015 | 61 | 08 October 2015 | 19 October 2015 | −97 |
01 July 2015 | 12 July 2015 | 26 | 19 October 2015 | 30 October 2015 | 233 |
12 July 2015 | 23 July 2015 | −198 | 30 October 2015 | 10 November 2015 | 45 |
23 July 2015 | 03 August 2015 | 26 | 10 November 2015 | 21 November 2015 | 101 |
03 August 2015 | 14 August 2015 | 246 | 21 November 2015 | 02 December 2015 | −230 |
14 August 2015 | 25 August 2015 | −106 | 02 December 2015 | 13 December 2015 | 105 |
25 August 2015 | 05 September 2015 | −95 | 13 December 2015 | 24 December 2015 | −6 |
05 September 2015 | 16 September 2015 | −43 | 24 December 2015 | 04 January 2016 | −53 |
16 September 2015 | 27 September 2015 | 100 |
Acquisition Time | Polarization | Pixel Spacing (Range) | Pixel Spacing (Azimuth) | Perpendicular Baseline |
---|---|---|---|---|
20 June 2015 | HH | ~0.909 m | ~1.896 m | 63.4537 m |
24 December 2015 | HH |
No. | Offset Tracking | Leveling (LOS) | Absolute Error |
---|---|---|---|
S1 | −0.3186 | −0.6164 | 0.2978 |
S2 | −0.6400 | −0.7968 | 0.1568 |
S3 | −0.2725 | −0.5545 | 0.2820 |
S4 | −0.2056 | −0.3617 | 0.1561 |
S5 | −0.5175 | −0.6674 | 0.1499 |
S6 | −0.6422 | −0.7093 | 0.0671 |
S7 | −0.6543 | −0.7192 | 0.0649 |
S8 | −0.6854 | −0.8312 | 0.1458 |
S9 | −0.8026 | −0.8469 | 0.0443 |
S10 | −0.7132 | −0.8764 | 0.1632 |
S11 | −0.7608 | −0.8507 | 0.0899 |
S12 | −0.7654 | −0.7363 | −0.0291 |
S13 | −0.2910 | −0.1045 | −0.1865 |
S14 | 0.1116 | −0.0622 | 0.1738 |
S15 | 0.0869 | −0.0627 | 0.1496 |
S16 | 0.1277 | −0.0534 | 0.1811 |
S17 | 0.0798 | −0.0576 | 0.1374 |
S18 | 0.0138 | −0.0656 | 0.0794 |
S19 | −0.0336 | −0.0718 | 0.0382 |
S20 | 0.0567 | −0.0673 | 0.1240 |
No. | Results in the LOS Direction (m) | Absolute Error (m) | |||||
---|---|---|---|---|---|---|---|
Leveling | D-InSAR | Offset Tracking | Fusion Result | D-InSAR | Offset Tracking | Fusion | |
S1 | −0.6164 | −0.4496 | −0.3186 | −0.4496 | 0.1668 | 0.2978 | 0.1668 |
S2 | −0.7968 | −0.4459 | −0.6400 | −0.6400 | 0.3509 | 0.1568 | 0.1568 |
S3 | −0.5545 | −0.4235 | −0.2725 | −0.4235 | 0.1311 | 0.2820 | 0.1311 |
S4 | −0.3617 | −0.3173 | −0.2056 | −0.3173 | 0.0444 | 0.1560 | 0.0444 |
S5 | −0.6674 | −0.4254 | −0.5175 | −0.4759 | 0.2420 | 0.1500 | 0.1915 |
S6 | −0.7094 | −0.3720 | −0.6422 | −0.5130 | 0.3373 | 0.0671 | 0.1964 |
S7 | −0.7192 | −0.3554 | −0.6543 | −0.6543 | 0.3637 | 0.0648 | 0.0648 |
S8 | −0.8312 | −0.3977 | −0.6854 | −0.6854 | 0.4335 | 0.1458 | 0.1458 |
S9 | −0.8469 | −0.3995 | −0.8026 | −0.8026 | 0.4474 | 0.0443 | 0.0443 |
S10 | −0.8764 | −0.4181 | −0.7132 | −0.6848 | 0.4583 | 0.1633 | 0.1917 |
S11 | −0.8507 | −0.4258 | −0.7608 | −0.7608 | 0.4250 | 0.0899 | 0.0899 |
S12 | −0.7363 | −0.4159 | −0.7654 | −0.7654 | 0.3204 | −0.0291 | −0.0291 |
S13 | −0.1045 | −0.0800 | −0.2910 | −0.1140 | 0.0245 | −0.1865 | −0.0096 |
S14 | −0.0622 | −0.0646 | 0.1116 | −0.0646 | -0.0024 | 0.1738 | −0.0024 |
S15 | −0.0627 | −0.0660 | 0.0869 | −0.0660 | −0.0033 | 0.1496 | −0.0033 |
S16 | −0.0534 | −0.0566 | 0.1277 | −0.0566 | −0.0032 | 0.1811 | −0.0032 |
S17 | −0.0576 | −0.0644 | 0.0798 | −0.0644 | −0.0067 | 0.1374 | −0.0067 |
S18 | −0.0656 | −0.0619 | 0.0138 | −0.0619 | 0.0037 | 0.0794 | 0.0037 |
S19 | −0.0718 | −0.0617 | −0.0336 | −0.0617 | 0.0101 | 0.0382 | 0.0101 |
S20 | −0.0673 | −0.0631 | 0.0567 | −0.0631 | 0.0042 | 0.1240 | 0.0042 |
Mean | −0.4556 | −0.2682 | −0.3413 | −0.3862 | 0.1874 | 0.1143 | 0.0694 |
Mean. Abs | 0.4556 | 0.2682 | 0.3890 | 0.3862 | 0.1890 | 0.1358 | 0.0748 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, D.; Tan, K.; Du, Q.; Chen, Y.; Ding, J. Decision Fusion of D-InSAR and Pixel Offset Tracking for Coal Mining Deformation Monitoring. Remote Sens. 2018, 10, 1055. https://doi.org/10.3390/rs10071055
Ou D, Tan K, Du Q, Chen Y, Ding J. Decision Fusion of D-InSAR and Pixel Offset Tracking for Coal Mining Deformation Monitoring. Remote Sensing. 2018; 10(7):1055. https://doi.org/10.3390/rs10071055
Chicago/Turabian StyleOu, Depin, Kun Tan, Qian Du, Yu Chen, and Jianwei Ding. 2018. "Decision Fusion of D-InSAR and Pixel Offset Tracking for Coal Mining Deformation Monitoring" Remote Sensing 10, no. 7: 1055. https://doi.org/10.3390/rs10071055
APA StyleOu, D., Tan, K., Du, Q., Chen, Y., & Ding, J. (2018). Decision Fusion of D-InSAR and Pixel Offset Tracking for Coal Mining Deformation Monitoring. Remote Sensing, 10(7), 1055. https://doi.org/10.3390/rs10071055