Land Cover Change in the Lower Yenisei River Using Dense Stacking of Landsat Imagery in Google Earth Engine
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. Landsat Imagery and Composite Generation
2.2.2. Landsat Classification and Accuracy Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
a. 1985–1987 Landsat 5 | Validation Data | |||||
Classification Data | Barren | Closed Forest | Tundra/Open Forest | Water | Snow | User Accuracy |
Barren | 1146 | 0 | 4 | 0 | 9 | 98.9% |
Closed Forest | 0 | 4564 | 0 | 0 | 0 | 100.0% |
Tundra/Open Forest | 0 | 14 | 1048 | 0 | 0 | 98.6% |
Water | 91 | 0 | 87 | 8109 | 137 | 96.2% |
Snow | 0 | 0 | 0 | 397 | 362 | 47.0% |
Producer Accuracy | 92.6% | 99.6% | 92.0% | 95.3% | 71.3% | |
Overall accuracy = 95.372%, kappa statistic = 92.597%. | ||||||
b. 1988–1990 Landsat 5 | Validation Data | |||||
Classification Data | Barren | Closed Forest | Tundra/Open Forest | Water | Snow | User Accuracy |
Barren | 1159 | 0 | 0 | 0 | 0 | 100% |
Closed Forest | 0 | 4564 | 0 | 0 | 0 | 100% |
Tundra/Open Forest | 0 | 27 | 1035 | 0 | 0 | 97.5% |
Water | 259 | 0 | 0 | 8156 | 0 | 96.9% |
Snow | 119 | 0 | 0 | 0 | 567 | 82.7% |
Producer Accuracy | 75.4% | 99.4% | 100% | 100% | 100% | |
Overall accuracy = 97.452%, kappa statistic = 95.968%. | ||||||
c. 1991–1993 Landsat 5 | Validation Data | |||||
Classification Data | Barren | Closed Forest | Tundra/Open Forest | Water | Snow | User Accuracy |
Barren | 1158 | 0 | 1 | 0 | 0 | 99.9% |
Closed Forest | 0 | 4564 | 0 | 0 | 0 | 1 |
Tundra/Open Forest | 0 | 22 | 1040 | 0 | 0 | 97.9% |
Water | 259 | 0 | 0 | 7618 | 538 | 90.5% |
Snow | 0 | 0 | 0 | 45 | 714 | 94.1% |
Producer Accuracy | 81.7% | 99.5% | 99.9% | 99.4% | 57.0% | |
Overall accuracy = 94.58%, kappa statistic = 91.663%. | ||||||
d. 1994–1996 Landsat 5 | Validation Data | |||||
Classification Data | Barren | Closed Forest | Tundra/Open Forest | Water | Snow | User Accuracy |
Barren | 1159 | 0 | 0 | 0 | 0 | 100% |
Closed Forest | 0 | 4535 | 29 | 0 | 0 | 99.4% |
Tundra/Open Forest | 0 | 33 | 1029 | 0 | 0 | 96.9% |
Water | 76 | 0 | 0 | 8348 | 0 | 99.1% |
Snow | 12 | 0 | 0 | 0 | 747 | 98.4% |
Producer Accuracy | 92.9% | 99.3% | 97.3% | 100.0% | 100.0% | |
Overall accuracy = 99.061 %, kappa statistic = 98.509%. | ||||||
e. 1997–1999 Landsat 5 | Validation Data | |||||
Classification Data | Barren | Closed Forest | Tundra/Open Forest | Water | Snow | User Accuracy |
Barren | 1158 | 0 | 1 | 0 | 0 | 99.9% |
Closed Forest | 0 | 4554 | 10 | 0 | 0 | 99.8% |
Tundra/Open Forest | 1 | 12 | 1049 | 0 | 0 | 98.8% |
Water | 354 | 0 | 3 | 8607 | 0 | 95.7% |
Snow | 67 | 0 | 0 | 9 | 492 | 86.6% |
Producer Accuracy | 73.3% | 99.7% | 98.7% | 99.9% | 100% | |
Overall accuracy = 97.103%, kappa statistic = 95.405%. | ||||||
f. 2000–2002 Landsat 7 | Validation Data | |||||
Classification Data | Barren | Closed Forest | Tundra/Open Forest | Water | Snow | User Accuracy |
Barren | 846 | 0 | 0 | 0 | 313 | 73.0% |
Closed Forest | 0 | 4564 | 0 | 0 | 0 | 100.0% |
Tundra/Open Forest | 0 | 5 | 1039 | 0 | 0 | 99.5% |
Water | 0 | 0 | 0 | 8424 | 0 | 100.0% |
Snow | 6 | 0 | 0 | 249 | 442 | 63.4% |
Producer Accuracy | 99.3% | 99.9% | 100.0% | 97.1% | 58.5% | |
Overall accuracy = 96.394%, kappa statistic = 94.161%. | ||||||
g. 2003–2005 Landsat 7 | Validation Data | |||||
Classification Data | Barren | Closed Forest | Tundra/Open Forest | Water | Snow | User Accuracy |
Barren | 1159 | 0 | 0 | 0 | 0 | 100% |
Closed Forest | 0 | 4564 | 0 | 0 | 0 | 100% |
Tundra/Open Forest | 0 | 11 | 1033 | 0 | 0 | 98.9% |
Water | 463 | 0 | 0 | 7959 | 2 | 94.5% |
Snow | 0 | 0 | 0 | 440 | 311 | 41.4% |
Producer Accuracy | 71.4% | 99.8% | 100% | 94.8% | 99.4% | |
Overall accuracy = 94.254%, kappa statistic = 90.834%. | ||||||
h. 2006–2008 Landsat 7 | Validation Data | |||||
Classification Data | Barren | Closed Forest | Tundra/Open Forest | Water | Snow | User Accuracy |
Barren | 1159 | 0 | 0 | 0 | 0 | 100% |
Closed Forest | 0 | 4564 | 0 | 0 | 0 | 100% |
Tundra/Open Forest | 0 | 8 | 1036 | 0 | 0 | 99.2% |
Water | 9 | 0 | 0 | 8415 | 0 | 99.9% |
Snow | 0 | 0 | 0 | 183 | 567 | 75.6% |
Producer Accuracy | 99.2% | 99.8% | 100% | 100% | 97.9% | |
Overall accuracy = 98.745%, kappa statistic = 97.982%. | ||||||
i. 2009–2011 Landsat 7 | Validation Data | |||||
Classification Data | Barren | Closed Forest | Tundra/Open Forest | Water | Snow | User Accuracy |
Barren | 1158 | 0 | 1 | 0 | 0 | 99.9% |
Closed Forest | 0 | 4564 | 0 | 0 | 0 | 100% |
Tundra/Open Forest | 0 | 26 | 1018 | 0 | 0 | 97.5% |
Water | 0 | 0 | 0 | 8022 | 402 | 95.2% |
Snow | 19 | 0 | 0 | 0 | 703 | 97.4% |
Producer Accuracy | 98.4% | 99.4% | 99.9% | 100% | 63.6% | |
Overall accuracy = 97.185%, kappa statistic = 95.585%. | ||||||
j. 2012–2014 Landsat 7 | Validation Data | |||||
Classification Data | Barren | Closed Forest | Tundra/Open Forest | Water | Snow | User Accuracy |
Barren | 1152 | 0 | 0 | 0 | 7 | 99.4% |
Closed Forest | 0 | 4564 | 0 | 0 | 0 | 100% |
Tundra/Open Forest | 0 | 16 | 1028 | 0 | 0 | 98.5% |
Water | 11 | 0 | 0 | 8192 | 221 | 97.3% |
Snow | 0 | 0 | 0 | 67 | 689 | 91.1% |
Producer Accuracy | 99.1% | 99.7% | 100% | 99.2% | 75.1% | |
Overall accuracy = 97.981%, kappa statistic = 96.805%. | ||||||
k. 2015–2017 Landsat 8 | Validation Data | |||||
Classification Data | Barren | Closed Forest | Tundra/Open Forest | Water | Snow | User Accuracy |
Barren | 954 | 0 | 0 | 0 | 205 | 82.3% |
Closed Forest | 0 | 4564 | 0 | 0 | 0 | 100.0% |
Tundra/Open Forest | 0 | 13 | 2278 | 0 | 0 | 99.4% |
Water | 133 | 0 | 0 | 8158 | 133 | 96.8% |
Snow | 0 | 0 | 0 | 7 | 752 | 99.1% |
Producer Accuracy | 87.8% | 99.7% | 100.0% | 99.9% | 69.0% | |
Overall accuracy = 96.831%, kappa statistic = 95.752%. |
References
- Arctic Monitoring and Assessment Programme (AMAP). Snow, Water, Ice and Permafrost in the Arctic (SWIPA); AMAP: Oslo, Morway, 2011. [Google Scholar]
- Anisimov, O.A.; Kokorev, V.A.; Ziltcova, E.L. Temporal and Spatial Patterns of Modern Climatic Warming: Case Study of Northern Eurasia. Clim. Chang. 2013, 3, 871–883. [Google Scholar] [CrossRef]
- RosHYDROMET. Second Assessment of Climatic Changes and Their Impacts for the Russian Federation; Federa 1 Agency for Hydrometeorology and Environmental Monitoring (RosHYDROMET): Moscow, Russia, 2014; 61p. (In Russian) [Google Scholar]
- Beck, P.S.A.; Goetz, S.J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: Ecological variability and regional differences. Environ. Res. Lett. 2011, 6, 045501. [Google Scholar] [CrossRef]
- Macias-Fauria, M.; Forbes, B.C.; Zetterberg, P.; Kumpula, T. Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems. Nat. Clim. Chang. 2012, 2, 613–618. [Google Scholar] [CrossRef] [Green Version]
- Epstein, H.E.; Raynolds, M.K.; Walker, D.A.; Bhatt, U.S.; Tucker, C.J.; Pinzon, J.E. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environ. Res. Lett. 2012, 7, 015506. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.H.; Johnson, D.R.; Andresen, C.; Tweedie, C.E. High spatial resolution decade-time scale land cover change at multiple locations in the Beringian Arctic (1948–2000s). Environ. Res. Lett. 2012, 7, 025502. [Google Scholar] [CrossRef] [Green Version]
- Frost, G.V.; Epstein, H.E. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Glob. Chang. Biol. 2014, 20, 1264–1277. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.J.; Epstein, H.E.; Walker, D.A. Spatial heterogeneity of tundra vegetation response to recent temperature changes. Glob. Chang. Biol. 2006, 12, 42–55. [Google Scholar] [CrossRef]
- Elmendorf, S.C.; Henry, G.H.; Hollister, R.D.; Björk, R.G.; Boulanger-Lapointe, N.; Cooper, E.J.; Cornelissen, J.H.; Day, T.A.; Dorrepaal, E.; Elumeeva, T.G.; et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Chang. 2012, 2, 453–457. [Google Scholar] [CrossRef]
- Forbes, B.C.; Fauria, M.M.; Zetterberg, P. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Glob. Chang. Biol. 2010, 16, 1542–1554. [Google Scholar] [CrossRef]
- Boelman, N.T.; Gough, L.; McLaren, J.R.; Greaves, H. Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra? Environ. Res. Lett. 2011, 6, 035501. [Google Scholar] [CrossRef] [Green Version]
- Frost, G.V.; Epstein, H.E.; Walker, D.A.; Matyshak, G.; Ermokhina, K. Seasonal and Long-Term Changes to Active-Layer Temperatures after Tall Shrubland Expansion and Succession in Arctic Tundra. Ecosystems 2017, 21, 507–520. [Google Scholar] [CrossRef]
- Martin, A.C.; Jeffers, E.S.; Petrokofsky, G.; Myers-Smith, I.; Macias-Fauria, M. Shrub growth and expansion in the Arctic tundra: An assessment of controlling factors using an evidence-based approach. Environ. Res. Lett. 2017, 12, 085007. [Google Scholar] [CrossRef]
- Hallinger, M.; Manthey, M.; Wilmking, M. Establishing a missing link: Warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytol. 2010, 186, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Blok, D.; Sass-Klaassen, U.; Schaepman-Strub, G.; Heijmans, M.M.P.D.; Sauren, P.; Berendse, F. What are the main climate drivers for shrub growth in Northeastern Siberian tundra? Biogeosciences 2011, 8, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- Myers-Smith, I.; Hik, D.; Kennedy, C.; Cooley, D.; Johnstone, J.; Kennedy, A.; Krebs, C. Expansion of canopy-forming willows over the twentieth century on Herschel Island, Yukon Territory, Canada. Ambio 2011, 40, 610–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Myneni, R.B.; Chapin, F.S., III; Callaghan, T.V.; Pinzon, J.E.; Tucker, C.J.; Zhu, Z.; Bi, J.; Ciais, P.; Tømmervik, H.; et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Chang. 2013, 3, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Kullman, L. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J. Ecol. 2002, 90, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Shiyatov, S.G.; Terent’Ev, M.M.; Fomin, V.V. Spatiotemporal dynamics of forest-tundra communities in the Polar Urals. Russ. J. Ecol. 2005, 36, 69–75. [Google Scholar] [CrossRef]
- Lloyd, A.H. Ecological histories from Alaskan tree lines provide insight into future change. Ecology 2005, 86, 1687–1695. [Google Scholar] [CrossRef]
- Holtmeier, F.K.; Broll, G. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob. Ecol. Biogeogr. 2005, 14, 395–410. [Google Scholar] [CrossRef] [Green Version]
- Kharuk, V.I.; Ranson, K.J.; Im, S.T.; Il’ya, A.P. Climate-induced larch growth response within the central Siberian permafrost zone. Environ. Res. Lett. 2015, 10, 125009. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.C.; Sheng, Y.; MacDonald, G.M.; Hinzman, L.D. Disappearing Arctic Lakes. Science 2005, 308, 1429. [Google Scholar] [CrossRef] [PubMed]
- Muskett, R.R.; Romanovsky, V.E. Alaskan Permafrost Groundwater Storage Changes Derived from GRACE and Ground Measurements. Remote Sens. 2011, 3, 378–397. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, J.M.; Lyon, S.W.; Destouni, G. Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. J. Hydrol. 2012, 459–466. [Google Scholar] [CrossRef]
- Karlsson, J.M.; Lyon, S.W.; Destouni, G. Temporal Behavior of Lake SizeDistribution in a Thawing Permafrost Landscape in Northwestern Siberia. Remote Sens. 2014, 6, 621–636. [Google Scholar] [CrossRef]
- Karlsson, J.M.; Jaramillo, F.; Destouni, G. Hydro-climatic and lake change patterns in Arctic permafrost and non-permafrost areas. J. Hydrol. 2015, 529, 134–145. [Google Scholar] [CrossRef]
- Streletskiy, D.A.; Tananaev, N.I.; Open, T.; Shiklomanov, N.I.; Nyland, K.E.; Streletskiya, I.D.; Tokarev, I.; Shiklomanov, A.I. Permafrost hydrology in changing climatic conditions: Seasonal variability of stable isotope composition in rivers in discontinuous permafrost. Environ. Res. Lett. 2015, 10, 095003. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Hinzman, L.D. Shrinking thermokarst ponds and ground water dynamics in discontinuous permafrost near Council, Alaska. Permafr. Periglac. Process. 2003, 14, 151–160. [Google Scholar] [CrossRef]
- Boike, J.; Georgi, C.; Kirilin, G.; Muster, S.; Abramova, K.; Fedorova, I.; Chetverova, I.; Grigoriev, M.; Bornemann, N.; Langer, M. Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia–observations and modeling (Lena River Delta, Siberia). Biogeosciences 2015, 12, 5941. [Google Scholar] [CrossRef] [Green Version]
- Goward, S.; Arvidson, T.; Williams, D.; Faundeen, J.; Irons, J.; Franks, S. Historical Record of Landsat Global Coverage. Photogramm. Eng. Remote Sens. 2006, 72, 1155–1169. [Google Scholar] [CrossRef]
- Kumpula, T.; Pajunen, A.; Kaarlejärvi, E.; Forbes, B.C.; Stammler, F. Land Use and Land Cover Change in Arctic Russia: Ecological and Social Implications of Industrial Development. Glob. Environ. Chang. 2011, 21, 550–562. [Google Scholar] [CrossRef]
- Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; Hinzman, L. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens. Environ. 2004, 89, 281–308. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.S. Using Landsat Imagery to Evaluate Landscape-Level Impacts of Natural Gas Field Development: Tazovsky Peninsula, Russia, 1984–2007. Master’s Thesis, The University of Montana, Missoula, MT, USA, May 2012. [Google Scholar]
- Kennedy, R.E.; Cohen, W.B.; Schroeder, T.A. Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens. Environ. 2007, 110, 370–386. [Google Scholar] [CrossRef]
- Schneider, A. Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sens. Environ. 2012, 124, 689–704. [Google Scholar] [CrossRef]
- Fraser, R.; Olthof, I.; Carrière, M.; Deschamps, A.; Pouliot, D. A method for trend-based change analysis in Arctic tundra using the 25-year Landsat archive. Pol. Rec. 2012, 48, 83–93. [Google Scholar] [CrossRef]
- Brooker, A.; Fraser, R.H.; Olthof, I.; Kokelj, S.V.; Lacelle, D. Mapping the activity and evolution of retrogressive thaw slumps by tasselled cap trend analysis of a Landsat satellite image stack. Permafr. Periglac. Process. 2014, 25, 243–256. [Google Scholar] [CrossRef]
- Nyland, K.E. Climate- and Human-Induced Land Cover Change and Its Effects on the Permafrost System in the Lower Yenisei River of the Russian Arctic. Master’s Thesis, The George Washington University, Washington, DC, USA, May 2015. [Google Scholar]
- Nitze, I.; Grosse, G. Detection of landscape dynamics in the Arctic Lena Delta with temporally dense Landsat time-series stacks. Remote Sens. Environ. 2016, 181, 27–41. [Google Scholar] [CrossRef]
- Shiklomanov, A.I.; Lammers, R. Record Russian river discharge in 2007 and the limits of analysis. Environ. Res. Lett. 2009, 4, 045015. [Google Scholar] [CrossRef] [Green Version]
- Yershov, E.D.; Kondrat’yeva, K.A.; Loginov, V.F.; Sychev, I.K. Geocryological Map of the USSR; 16 Sheets, Scale 1:2,500,000; Faculty of Geology, Lomonosov Moscow University, and Russian Ministry of Geology: Moscow, Russia, 1991. [Google Scholar]
- Tyrtikov, A.P. Perennially Frozen Ground and Vegetation; Technical Translation; National Research Council Canada: Ottawa, ON, USA, 1964; p. 34. [Google Scholar]
- Rodionov, A.; Flessa, H.; Grabe, M.; Kazansky, O.A.; Shibistova, O.; Guggenberger, G. Organic carbon and total nitrogen variability in permafrost-affected soils in a forest tundra ecotone. Eur. J. Soil Sci. 2007, 58, 1260–1272. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Masek, J.G.; Wolfe, R.E.; Huang, C. Building a consistent medium resolution satellite data set using moderate resolution imaging spectroradiometer products as reference. J. Appl. Remote Sens. 2010, 4, 043526. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kirdyanov, A.V.; Hagedorn, F.; Knorre, A.A.; Fedotova, E.V.; Vaganov, E.A.; Naurzbaev, M.M.; Moiseev, P.A.; Rigling, A. 20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia. Boreas 2012, 41, 56–67. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Rowland, J.C.; Wilson, C.J.; Altmann, G.L.; Brumby, S.P. The Importance of Natural Variability in Lake Areas on the Detection of Permafrost Degradation: A Case Study in the Yukon Flats, Alaska. Permafr. Periglac. Process. 2013, 24, 224–240. [Google Scholar] [CrossRef]
- Fraser, R.H.; Olthof, I.; Carrière, M.; Deschamps, A.; Pouliot, D. Detecting long-term changes to vegetation in northern Canada using the Landsat satellite image archive. Environ. Res. Lett. 2011, 6, 045502. [Google Scholar] [CrossRef] [Green Version]
- Tape, K.; Sturm, M.; Racine, C. The evidence for shrub expansion in northern Alaska and the pan-Arctic. Glob. Chang. Biol. 2006, 12, 686–702. [Google Scholar] [CrossRef]
- Naito, A.T.; Cairns, D.M. Patterns and processes of global shrub expansion. Prog. Phys. Geogr. 2011, 35, 423–442. [Google Scholar] [CrossRef]
- Tremblay, B.; Lévesque, E.; Boudreau, S. Recent expansion of erect shrubs in the Low Arctic: Evidence from Eastern Nunavik. Environ. Res. Lett. 2012, 7, 035501. [Google Scholar] [CrossRef]
- Romanovsky, V.E.; Drozdov, D.S.; Oberman, N.G.; Malkova, G.V.; Khologoc, A.L.; Marchenko, S.S.; Moskalenko, N.G.; Sergeev, D.O.; Ukraintseva, N.G.; Abramov, A.A.; et al. Thermal state of permafrost in Russia. Permafr. Periglac. Process. 2010, 21, 136–155. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, A.N.; Ivanova, R.N.; Park, H.; Hiyama, T.; Iijima, Y. Recent air temperature changes in the permafrost landscapes of northeastern Eurasia. Pol. Sci. 2014, 8, 114–128. [Google Scholar] [CrossRef]
- Shiklomanov, N.I.; Streletskiy, D.A.; Nelson, F.E. Northern Hemisphere Component of the Global Circumpolar Active Layer Monitoring (CALM) Program. In Proceedings of the 10th International Conference on Permafrost, Salekhard, Russia, 25–29 June 2012; pp. 377–382. [Google Scholar]
- Shur, Y.L.; Jorgenson, M.T. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr. Periglac. Process. 2007, 18, 7–19. [Google Scholar] [CrossRef]
Satellite | Years | Paths | Rows | No. of Images |
---|---|---|---|---|
Landsat 5 | 1985–1987 | 151–156 | 10–13 | 146 |
Landsat 5 | 1988–1990 | 151–156 | 10–13 | 148 |
Landsat 5 | 1991–1993 | 151–156 | 10–13 | 108 |
Landsat 5 | 1994–1996 | 151–156 | 10–13 | 122 |
Landsat 5 | 1997–1999 | 151–156 | 10–13 | 107 |
Landsat 7 | 2000–2002 | 150–156, 230 | 10–13, 231 | 143 |
Landsat 7 | 2003–2005 | 150–156, 226 | 10–13, 234 | 116 |
Landsat 7 | 2006–2008 | 150–156 | 10–13 | 126 |
Landsat 7 | 2009–2011 | 150–156 | 10–13 | 140 |
Landsat 7 | 2012–2014 | 150–156 | 10–13 | 200 |
Landsat 8 | 2015–2017 | 150–156, 222–231 | 10–13, 231–233 | 285 |
a. 1985–1987 | Validation Data | |||||
Classification Data | Barren | Closed Forest | Tundra/Open Forest | Water | Snow | User Accuracy |
Barren | 1146 | 0 | 4 | 0 | 9 | 98.9% |
Closed Forest | 0 | 4564 | 0 | 0 | 0 | 100.0% |
Tundra/Open Forest | 0 | 14 | 1048 | 0 | 0 | 98.6% |
Water | 91 | 0 | 87 | 8109 | 137 | 96.2% |
Snow | 0 | 0 | 0 | 397 | 362 | 47.0% |
Producer Accuracy | 92.6% | 99.6% | 92.0% | 95.3% | 71.3% | |
Overall accuracy = 95.34%, kappa statistic = 92.6%. | ||||||
b. 1994–1996 | Validation Data | |||||
Classification Data | Barren | Closed Forest | Tundra/Open Forest | Water | Snow | User Accuracy |
Barren | 1159 | 0 | 0 | 0 | 0 | 100% |
Closed Forest | 0 | 4535 | 29 | 0 | 0 | 99.4% |
Tundra/Open Forest | 0 | 33 | 1029 | 0 | 0 | 96.9% |
Water | 76 | 0 | 0 | 8348 | 0 | 99.1% |
Snow | 12 | 0 | 0 | 0 | 747 | 98.4% |
Producer Accuracy | 92.9% | 99.3% | 97.3% | 100.0% | 100.0% | |
Overall accuracy = 99.1%, kappa statistic = 98.5%. | ||||||
c. 2000–2002 | Validation Data | |||||
Classification Data | Barren | Closed Forest | Tundra/Open Forest | Water | Snow | User Accuracy |
Barren | 846 | 0 | 0 | 0 | 313 | 73.0% |
Closed Forest | 0 | 4564 | 0 | 0 | 0 | 100.0% |
Tundra/Open Forest | 0 | 5 | 1039 | 0 | 0 | 99.5% |
Water | 0 | 0 | 0 | 8424 | 0 | 100.0% |
Snow | 6 | 0 | 0 | 249 | 442 | 63.4% |
Producer Accuracy | 99.3% | 99.9% | 100.0% | 97.1% | 58.5% | |
Overall accuracy = 96.4%, kappa statistic = 94.2%. | ||||||
d. 2015–2017 | Validation Data | |||||
Classification Data | Barren | Closed Forest | Tundra/Open Forest | Water | Snow | User Accuracy |
Barren | 954 | 0 | 0 | 0 | 205 | 82.3% |
Closed Forest | 0 | 4564 | 0 | 0 | 0 | 100.0% |
Tundra/Open Forest | 0 | 13 | 2278 | 0 | 0 | 99.4% |
Water | 133 | 0 | 0 | 8158 | 133 | 96.8% |
Snow | 0 | 0 | 0 | 7 | 752 | 99.1% |
Producer Accuracy | 87.8% | 99.7% | 100.0% | 99.9% | 69.0% | |
Overall accuracy = 96.8%, kappa statistic = 95.82%. |
To (2015–2017) | |||||||
---|---|---|---|---|---|---|---|
Area (km2) | Barren | Closed Forest | Tundra/Open Forest | Urban | Water | Snow | |
From (1985–1987) | Barren | x | 57.73 | 795.10 | 0 | 11.93 | 322.94 |
Closed Forest | 106.19 | x | 3 459.89 | 2.80 | 236.13 | 46.63 | |
Tundra/Open Forest | 1865.28 | 24,856.37 | x | 20.92 | 631.89 | 235.51 | |
Urban | 0 | 1.84 | 10.73 | x | 0.10 | 25.45 | |
Water | 607.12 | 88.61 | 721.83 | 1.82 | x | 201.79 | |
Snow | 591.25 | 16.08 | 228.28 | 10.40 | 36.73 | x |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
E. Nyland, K.; E. Gunn, G.; I. Shiklomanov, N.; N. Engstrom, R.; A. Streletskiy, D. Land Cover Change in the Lower Yenisei River Using Dense Stacking of Landsat Imagery in Google Earth Engine. Remote Sens. 2018, 10, 1226. https://doi.org/10.3390/rs10081226
E. Nyland K, E. Gunn G, I. Shiklomanov N, N. Engstrom R, A. Streletskiy D. Land Cover Change in the Lower Yenisei River Using Dense Stacking of Landsat Imagery in Google Earth Engine. Remote Sensing. 2018; 10(8):1226. https://doi.org/10.3390/rs10081226
Chicago/Turabian StyleE. Nyland, Kelsey, Grant E. Gunn, Nikolay I. Shiklomanov, Ryan N. Engstrom, and Dmitry A. Streletskiy. 2018. "Land Cover Change in the Lower Yenisei River Using Dense Stacking of Landsat Imagery in Google Earth Engine" Remote Sensing 10, no. 8: 1226. https://doi.org/10.3390/rs10081226
APA StyleE. Nyland, K., E. Gunn, G., I. Shiklomanov, N., N. Engstrom, R., & A. Streletskiy, D. (2018). Land Cover Change in the Lower Yenisei River Using Dense Stacking of Landsat Imagery in Google Earth Engine. Remote Sensing, 10(8), 1226. https://doi.org/10.3390/rs10081226