Comparison of Three Methods for Estimating Land Surface Temperature from Landsat 8-TIRS Sensor Data
Abstract
:1. Introduction
2. LST Algorithms
2.1. Radiative Transfer Equation
2.2. Single-Channel Algorithm
2.3. Split-Window Algorithm
3. Study Site and Data
3.1. Study Site
3.2. Data
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Simó, G.; Martínez-Villagrasa, D.; Jiménez, M.A.; Caselles, V.; Cuxart, J. Impact of the Surface–Atmosphere Variables on the Relation Between Air and Land. Pure Appl. Geophys. 2018, 1–15. [Google Scholar] [CrossRef]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Montanaro, M.; Gerace, A.; Lunsford, A.; Reuter, D. Stray Light Artifacts in Imagery from the Landsat 8 Thermal Infrared Sensor. Remote Sens. 2014, 11, 10435–10456. [Google Scholar] [CrossRef]
- Gerace, A.; Montanaro, M. Derivation and validation of the stray light correction algorithm for the thermal infrared sensor onboard Landsat 8. Remote Sens. Environ. 2017, 191, 246–257. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.R.; Hook, S.J.; Raqueno, N.G.; Markham, B.L.; Radocinski, R.G. Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration. Remote Sens. 2014, 6, 11607–11626. [Google Scholar] [CrossRef] [Green Version]
- Gerace, A.; Montanaro, M.; Connal, R. Leveraging intercalibration techniques to support stray-light removal from Landsat 8 Thermal Infrared Sensor data. J. Appl. Remote Sens. 2017, 12, 012007. [Google Scholar] [CrossRef]
- Landsat 8 (L8) Science Data Users Handbook Version 2; Department of the Interior U.S. Geological Survey: Washington, DC, USA, 2016.
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristóbal, J. Land Surface Temperature Retrieval Methods from Landsat-8 Thermal Infrared Sensor Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Wang, F.; Qin, Z.; Song, C.; Tu, L.; Karnieli, A.; Zhao, S. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data. Remote Sens. 2015, 7, 4268–4289. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Ren, H.; Qin, Q.; Meng, J.; Zhao, S. A Practical Split-Window Algorithm for Estimating Land Surface Temperature from Landsat 8 Data. Remote Sens. 2015, 7, 647–665. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Theocharous, E.; Barker Snook, I.; Fox, N.P. 2016 Comparison of IR Brightness Temperature Measurements in Support of Satellite Validation. Part 1: Blackbody Laboratory Comparison; NPL Report Env 12; National Physical Laboratory: Teddington, UK, 2017. [Google Scholar]
- Snyder, W.C.; Wan, Z.; Zhang, Y.; Feng, Y.Z. Classification-based emissivity for Land Surface Temperature measurement from space. J. Remote Sens. 1998, 19, 2753–2774. [Google Scholar] [CrossRef]
- Brutsaert, W. On a derivable formula for long-wave radiation from clear skies. Water Resour. Res. 1975, 11, 742–744. [Google Scholar] [CrossRef]
- Simó, G.; García-Santos, V.; Jiménez, M.A.; Martínez-Villagrasa, D.; Picos, R.; Caselles, V.; Cuxart, J. Landsat and Local Land Surface Temperatures in a Heterogeneous Terrain Compared to MODIS Values. Remote Sens. 2016, 8, 849. [Google Scholar] [CrossRef]
- García-Santos, V.; Cuxart, J.; Jiménez, M.A.; Martinez-Villagrasa, D.; Simó, G.; Picos, R.; Caselles, V. Study of temperature heterogeneities at subkilometric scales and impact on surface-atmosphere energy interactions. IEEE Trans. Geosci. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L. MODTRAN5: 2006 update. Proc. SPIE 2006. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Hook, S.J. Validation of a web-based atmospheric correction tool for single thermal Band instruments. Proc. SPIE 2005. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Zhu, Y. NCEP/NCAR 40 year reanalysis project. Bull. Am. Meteor. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Pérez-Planells, L.; García-Santos, V.; Caselles, V. Comparing different profiles to characterize the atmosphere for three MODIS TIR Bands. Atmos. Res. 2015, 161, 108–115. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J.; Abbott, E.; Malakar, N.; Islam, T.; Abrams, M. The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth’s emissivity at 100 m spatial scale. Geophys. Res. Lett. 2015, 42, 7966–7976. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, C.J.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Cristóbal, J.; Jiménez-Muñoz, J.C.; Prakash, A.; Mattar, C.; Skokovic, D.; Sobrino, J.A. An Improved Single-Channel Method to Retrieve Land Surface Temperature from the Landsat-8 Thermal Band. Remote Sens. 2018, 10, 431. [Google Scholar] [CrossRef]
- Meng, X.; Cheng, J. Evaluating Eight Global Reanalysis Products for Atmospheric Correction of Thermal Infrared Sensor—Application to Landsat 8 TIRS10 Data. Remote Sens. 2018, 10, 474. [Google Scholar] [CrossRef]
Temperature Range (°C) | a10 | b10 | R2 |
---|---|---|---|
50–70 | −70.1775 | 0.4581 | 0.9997 |
30–50 | −62.7182 | 0.4339 | 0.9996 |
−20–30 | −55.4276 | 0.4086 | 0.9996 |
W (cm) | b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 |
---|---|---|---|---|---|---|---|---|
0–2.5 | −2.78009 | 1.01408 | 0.15833 | −0.34991 | 4.04487 | 3.55414 | −8.88394 | 0.09152 |
2.5–3.5 | 11.00824 | 0.95995 | 0.17243 | −0.28852 | 7.11492 | 0.42684 | −6.62025 | −0.06381 |
3.5–4.5 | 9.6261 | 0.96202 | 0.13834 | −0.17262 | 7.87883 | 5.1791 | −13.26611 | −0.07603 |
4.5–5.5 | 0.61258 | 0.99124 | 0.10051 | −0.09664 | 7.85758 | 6.86626 | −15.00742 | −0.01185 |
5.5–6.5 | −0.34808 | 0.98123 | 0.05599 | −0.03518 | 11.96444 | 9.0671 | −14.74085 | −0.20471 |
0–6.5 | −0.41165 | 1.00522 | 0.14543 | −0.27297 | 4.06655 | −6.92512 | −18.27461 | 0.24468 |
Number | Date (yyyymmdd) | UTC Time (hhmm) | Ground LST (K) | Landsat 8 Filename |
---|---|---|---|---|
1 | 20160424 | 1030 | 299.8 | LC08_L1TP_197032_20160424_20170326_01_T1 |
2 | 20160503 | 1024 | 305.6 | LC08_L1TP_196033_20160503_20170325_01_T1 |
3 | 20160604 | 1024 | 317.2 | LC08_L1TP_196033_20160604_20170324_01_T1 |
4 | 20160627 | 1030 | 317.3 | LC08_L1TP_197032_20160627_20170323_01_T1 |
5 | 20160706 | 1025 | 322.2 | LC08_L1TP_196033_20160706_20170323_01_T1 |
6 | 20160729 | 1031 | 323.2 | LC08_L1TP_197032_20160729_20170322_01_T1 |
7 | 20160814 | 1031 | 322.1 | LC08_L1TP_197032_20160814_20170322_01_T1 |
8 | 20160823 | 1025 | 319.3 | LC08_L1TP_196033_20160823_20170322_01_T1 |
9 | 20161118 | 1031 | 293.9 | LC08_L1TP_197032_20161118_20170318_01_T1 |
10 | 20170206 | 1031 | 287.8 | LC08_L1TP_197032_20170206_20170216_01_T1 |
11 | 20170310 | 1031 | 298.9 | LC08_L1TP_197032_20170310_20170317_01_T1 |
12 | 20170319 | 1025 | 299.2 | LC08_L1TP_196033_20170319_20170328_01_T1 |
13 | 20170404 | 1025 | 300.2 | LC08_L1TP_196033_20170404_20170414_01_T1 |
14 | 20170411 | 1031 | 306.0 | LC08_L1TP_197032_20170411_20170415_01_T1 |
15 | 20170506 | 1025 | 306.6 | LC08_L1TP_196033_20170506_20170515_01_T1 |
16 | 20170614 | 1031 | 325.4 | LC08_L1TP_197032_20170614_20170628_01_T1 |
17 | 20170623 | 1025 | 320.2 | LC08_L1TP_196033_20170623_20170630_01_T1 |
18 | 20170709 | 1025 | 321.3 | LC08_L1TP_196033_20170709_20170717_01_T1 |
19 | 20170817 | 1031 | 324.6 | LC08_L1TP_197032_20170817_20170826_01_T1 |
20 | 20170826 | 1025 | 322.6 | LC08_L1TP_196033_20170826_20170913_01_T1 |
21 | 20170902 | 1031 | 316.9 | LC08_L1TP_197032_20170902_20170916_01_T1 |
RTE | SCA | SWA | |||||
---|---|---|---|---|---|---|---|
Band 10 | Band 11 | JM2014 | FW2015 | D2015_A | D2015_G | JM2014 | |
Bias (K) | –0.1 | 2.0 | 0.8 | 0.7 | –1.1 | –1.4 | 0.4 |
MAE (K) | 1.8 | 3.0 | 1.6 | 1.9 | 1.3 | 1.6 | 1.4 |
RMSE (K) | 2.3 | 3.6 | 2.2 | 2.3 | 1.8 | 2.0 | 1.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Santos, V.; Cuxart, J.; Martínez-Villagrasa, D.; Jiménez, M.A.; Simó, G. Comparison of Three Methods for Estimating Land Surface Temperature from Landsat 8-TIRS Sensor Data. Remote Sens. 2018, 10, 1450. https://doi.org/10.3390/rs10091450
García-Santos V, Cuxart J, Martínez-Villagrasa D, Jiménez MA, Simó G. Comparison of Three Methods for Estimating Land Surface Temperature from Landsat 8-TIRS Sensor Data. Remote Sensing. 2018; 10(9):1450. https://doi.org/10.3390/rs10091450
Chicago/Turabian StyleGarcía-Santos, Vicente, Joan Cuxart, Daniel Martínez-Villagrasa, Maria Antònia Jiménez, and Gemma Simó. 2018. "Comparison of Three Methods for Estimating Land Surface Temperature from Landsat 8-TIRS Sensor Data" Remote Sensing 10, no. 9: 1450. https://doi.org/10.3390/rs10091450
APA StyleGarcía-Santos, V., Cuxart, J., Martínez-Villagrasa, D., Jiménez, M. A., & Simó, G. (2018). Comparison of Three Methods for Estimating Land Surface Temperature from Landsat 8-TIRS Sensor Data. Remote Sensing, 10(9), 1450. https://doi.org/10.3390/rs10091450