The Potential of Spectral Indices in Detecting Various Stages of Afforestation over the Loess Plateau Region of China
Abstract
:1. Introduction
2. Study Area
3. Data and Method
3.1. Data
3.2. Spectral Indices Chosen for the Experiment
3.3. Characteristics of an Ideal Sapling Growth Index Curve
3.4. Calculating the Year When Saplings from Afforestation were Recognized as Forest
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2015; The Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Shen, R.M. Forestry Policy New Deal in China: Policy Process and Effect. Ph.D. Thesis, Tsinghua University, Beijing, China, 2014. [Google Scholar]
- The State Forestry Administration of the People’s Republic of China. China Forest Resources Report (2009–2013); China Forestry Publishing House: Beijing, China, 2014.
- Ministry of Ecology and Environment of People’s Republic of China. China Environmental Status Bulletin 2014; Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2015.
- Liu, S.; Gong, P. Change of surface cover greenness in china between 2000 and 2010. Chin. Sci. Bull. 2012, 57, 2835–2845. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Ouyang, Z.; Tam, C.; Chen, X. Ecological and socioeconomic effects of china’s policies for ecosystem services. Proc. Natl. Acad. Sci. USA 2008, 105, 9477–9482. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Catt, S.; Pangestu, M.; Temple-Smith, P. Impact of china’s grain for green project on the landscape of vulnerable arid and semi-arid agricultural regions: A case study in northern shaanxi province. J. Appl. Ecol. 2009, 46, 536–543. [Google Scholar]
- Cao, S.X.; Xu, C.G.; Li, C.; Wang, X.Q. Attitudes of farmers in china’s northern shaanxi province towards the land-use changes required under the grain for green project, and implications for the project’s success. Land Use Policy 2009, 26, 1182–1194. [Google Scholar] [CrossRef]
- Guo, J.; Gong, P. Forest Cover Dynamics from Landsat Time-Series Data Over Yan’an City on the Loess Plateau during the Grain for Green Project; Taylor & Francis, Inc.: Abingdon, UK, 2016; pp. 4101–4118. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R. High-resolution global maps of 21st-century forest cover change. Science 2014, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y. Mapping major land cover dynamics in beijing using all landsat images in google earth engine. Remote Sens. Environ. 2017. [Google Scholar] [CrossRef]
- Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest monitoring using landsat time series data: A review. Can. J. Remote Sens. 2014, 40, 362–384. [Google Scholar] [CrossRef]
- Cohen, W.B.; Healey, S.P.; Yang, Z.; Stehman, S.V.; Brewer, C.K.; Brooks, E.B.; Gorelick, N.; Huang, C.; Hughes, M.J.; Kennedy, R.E. How similar are forest disturbance maps derived from different landsat time series algorithms? Forests 2017, 8, 98. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Gallant, A.L.; Shi, H.; Zhu, Z. Perspectives on monitoring gradual change across the continuity of landsat sensors using time-series data. Remote Sens. Environ. 2016, 185, 258–270. [Google Scholar] [CrossRef]
- Chu, T.; Guo, X.; Takeda, K. Remote sensing approach to detect post-fire vegetation regrowth in siberian boreal larch forest. Ecol. Indic. 2016, 62, 32–46. [Google Scholar] [CrossRef]
- Cuevasgonzález, M.; Gerard, F.; Balzter, H.; Riaño, D. Analysing forest recovery after wildfire disturbance in boreal siberia using remotely sensed vegetation indices. Glob. Chang. Biol. 2010, 15, 561–577. [Google Scholar] [CrossRef]
- Frazier, R.J.; Coops, N.C.; Wulder, M.A. Boreal shield forest disturbance and recovery trends using landsat time series. Remote Sens. Environ. 2015, 170, 317–327. [Google Scholar] [CrossRef]
- Hais, M.; Jonášová, M.; Langhammer, J.; Kučera, T. Comparison of two types of forest disturbance using multitemporal landsat tm/etm+ imagery and field vegetation data. Remote Sens. Environ. 2009, 113, 835–845. [Google Scholar] [CrossRef]
- Pickell, P.D.; Hermosilla, T.; Frazier, R.J.; Coops, N.C.; Wulder, M.A. Forest recovery trends derived from landsat time series for north american boreal forests. Int. J. Remote Sens. 2016, 37, 138–149. [Google Scholar] [CrossRef]
- Schroeder, T.A.; Wulder, M.A.; Healey, S.P.; Moisen, G.G. Mapping wildfire and clearcut harvest disturbances in boreal forests with landsat time series data. Remote Sens. Environ. 2011, 115, 1421–1433. [Google Scholar] [CrossRef]
- Jian, S.; Zhao, C.; Fang, S.; Yu, K. Effects of different vegetation restoration on soil water storage and water balance in the chinese loess plateau. Agric. For. Meteorol. 2015, 206, 85–96. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S. Finer resolution observation and monitoring of global land cover: First mapping results with landsat tm and etm+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Hu, L.; Yu, L.; Clinton, N.; Huang, H.; Yang, J.; Gong, P. A circa 2010 thirty meter resolution forest map for china. Remote Sens. 2014, 6, 5325–5343. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Hobart, G.W.; Luther, J.E.; Hermosilla, T.; Griffiths, P.; Coops, N.C.; Hall, R.J.; Hostert, P.; Dyk, A. Pixel-based image compositing for large-area dense time series applications and science. Can. J. Remote Sens. 2014, 40, 192–212. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Cohen, W.B.; Schroeder, T.A. Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens. Environ. 2007, 110, 370–386. [Google Scholar] [CrossRef]
- Crist, E.P.; Kauth, R.J. The tasseled cap de-mystified. Photogramm. Eng. Remote Sens. 1986, 52, 81–86. [Google Scholar]
- Healey, S.P.; Cohen, W.B.; Yang, Z.; Krankina, O.N. Comparison of tasseled cap-based landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [Google Scholar] [CrossRef]
- Huang, C.Q.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.L.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Tolk, B.; Zhu, Z. Monitoring forest changes in the southwestern united states using multitemporal landsat data. Remote Sens. Environ. 2009, 113, 1739–1748. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Xian, G.; Homer, C.; Tolk, B. Monitoring gradual ecosystem change using landsat time series analyses: Case studies in selected forest and rangeland ecosystems. Remote Sens. Environ. 2012, 122, 92–105. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index; and Remote Sensing of Severity, the Normalized Burn Ratio; USDA Forest Service: Ogden, UT, USA, 2006; pp. 1–51.
- Storey, E.A.; Stow, D.A.; O’Leary, J.F. Assessing postfire recovery of chamise chaparral using multi-temporal spectral vegetation index trajectories derived from landsat imagery. Remote Sens. Environ. 2016, 183, 53–64. [Google Scholar] [CrossRef]
- Goodwin, N.R.; Coops, N.C.; Wulder, M.A.; Gillanders, S.; Schroeder, T.A.; Nelson, T. Estimation of insect infestation dynamics using a temporal sequence of landsat data. Remote Sens. Environ. 2008, 112, 3680–3689. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D. Atmospherically resistant vegetation index (arvi) for eos-modis. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Kou, W.; Liang, C.; Wei, L.; Hernandez, A.; Yang, X. Phenology-based method for mapping tropical evergreen forests by integrating of modis and landsat imagery. Forests 2017, 8, 34. [Google Scholar] [CrossRef]
- Lehmann, E.A.; Wallace, J.F.; Caccetta, P.A.; Furby, S.L.; Zdunic, K. Forest cover trends from time series Landsat data for the Australian continent. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 453–462. [Google Scholar] [CrossRef]
- Sonnenschein, R.; Kuemmerle, T.; Udelhoven, T.; Stellmes, M.; Hostert, P. Differences in landsat-based trend analyses in drylands due to the choice of vegetation estimate. Remote Sens. Environ. 2011, 115, 1408–1420. [Google Scholar] [CrossRef]
- Helmer, E.H.; Lefsky, M.A.; Roberts, D.A. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System. J. Appl. Remote Sens. 2009, 3, 201–210. [Google Scholar]
- Chen, Y.; Liu, H.; Meng, X. System of Monitoring and Mangement for the State Key Forestry Ecological Project; China Forestry Publishing House: Beijing, China, 2011. [Google Scholar]
- National Development and Reform Commission. Available online: http://www.ndrc.gov.cn/zcfb/jd/201409/t20140927_679119.html (accessed on 17 September 2018).
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Checking Regulation in Project for Conversion of Cropland to Forest (gb/t 23231-2009); China Forestry Publishing House: Beijing, China, 2009.
- Huang, C.; Song, K.; Kim, S.; Townshend, J.R.G.; Davis, P.; Masek, J.G.; Goward, S.N. Use of a dark object concept and support vector machines to automate forest cover change analysis. Remote Sens. Environ. 2008, 112, 970–985. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Liang, L. A 30-year (1984–2013) record of annual urban dynamics of beijing city derived from landsat data. Remote Sens. Environ. 2015, 166, 78–90. [Google Scholar] [CrossRef]
Indices | Description | Time–Series Curve of Afforestation |
---|---|---|
SWIR1 | Short-wave infrared (1.55–1.75 µm) spectral range in micrometers [26] | |
TCB | Tasseled Cap Brightness [27] | |
DI | Disturbance Index [28] | |
IFZ | Integrated Forest Z-score [29] | |
SWIR/NIR (SN) | SWIR1/NIR ratio [30,31] | |
NDVI | Normalized difference vegetation Index [9] (NIR − RED)/(NIR + RED) | |
NBR | Normalized burned ratio (NIR − SWIR2)/(NIR + SWIR2) [32] | |
NBR2 | Normalized burned ratio2 (SWIR1 − SWIR2)/(SWIR1 + SWIR2) [33] | |
TCW | Tasseled Cap Wetness [27] | |
TCG | Tasseled Cap Greenness [27] | |
TCA | Tasseled Cap Angle [28] | |
NDMI | Normalized difference moisture Index [34] (NIR − SWIR1)/(NIR + SWIR1) | |
ARVI | Atmospherically Resistant Vegetation Index [35] (NIR − (2RED − BLUE))/(NIR + (2RED − BLUE)) | |
EVI | Enhanced Vegetation Index [36] 2.5(NIR − RED)/(NIR + 6RED − 7.5BLUE + 1) | |
WI | Woodiness Index [37] 512 − (RED + SWIR1) | |
LSWI | Land Surface Water [36] (NIR − SWIR1)/(NIR + SWIR1) | |
SAVI | Soil Adjusted Vegetation Index [38] (1 + 0.5)(NIR − RED)/(NIR + RED + 0.5) | |
WBDI | Wetness brightness difference index [39] WBDI = TCW − TCB |
Class | Reference of Afforestation Truth Pixels | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
125033 | 125034 | 125035 | 125036 | 126033 | 126034 | 126035 | 126036 | 127035 | 127036 | 128036 | Other | Total | |
125033 afforestation | 80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 89 |
125034 afforestation | 0 | 76 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 84 |
125035 afforestation | 0 | 0 | 46 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 52 |
125036 afforestation | 0 | 0 | 0 | 88 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 93 |
126033 afforestation | 0 | 0 | 0 | 0 | 65 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 75 |
126034 afforestation | 0 | 0 | 0 | 0 | 0 | 94 | 0 | 0 | 0 | 0 | 0 | 6 | 100 |
126035 afforestation | 0 | 0 | 0 | 0 | 0 | 0 | 93 | 0 | 0 | 0 | 0 | 3 | 96 |
126036 afforestation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 5 | 41 |
127035 afforestation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 93 | 0 | 0 | 7 | 100 |
127036 afforestation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 94 | 0 | 6 | 100 |
128036 afforestation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 92 | 8 | 100 |
total | 80 | 76 | 46 | 88 | 65 | 94 | 93 | 36 | 93 | 94 | 92 | 73 | 930 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Gong, P. The Potential of Spectral Indices in Detecting Various Stages of Afforestation over the Loess Plateau Region of China. Remote Sens. 2018, 10, 1492. https://doi.org/10.3390/rs10091492
Guo J, Gong P. The Potential of Spectral Indices in Detecting Various Stages of Afforestation over the Loess Plateau Region of China. Remote Sensing. 2018; 10(9):1492. https://doi.org/10.3390/rs10091492
Chicago/Turabian StyleGuo, Jing, and Peng Gong. 2018. "The Potential of Spectral Indices in Detecting Various Stages of Afforestation over the Loess Plateau Region of China" Remote Sensing 10, no. 9: 1492. https://doi.org/10.3390/rs10091492
APA StyleGuo, J., & Gong, P. (2018). The Potential of Spectral Indices in Detecting Various Stages of Afforestation over the Loess Plateau Region of China. Remote Sensing, 10(9), 1492. https://doi.org/10.3390/rs10091492