Gap-Filling of MODIS Fractional Snow Cover Products via Non-Local Spatio-Temporal Filtering Based on Machine Learning Techniques
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. MODIS SCF Products
2.2.2. Meteorological Observation, Land Cover and Digital Elevation Model data
3. Methodology
3.1. Investigation on Cloud Gaps in MODIS SCF Products
3.2. Gap-Filling Procedure
3.2.1. Theoretical Basis
3.2.2. Gap-Filling Method
3.3. Validation Methodology
3.3.1. Validation Based on “Cloud Assumption”
3.3.2. Validation Based on In Situ SD Observations
4. Experimental Results
4.1. Cloud Gaps in MODIS SCF Products Over Northern Xinjiang
4.2. The Effectiveness of Gap-Filling Methodology
4.3. Accuracy Validation Results
4.3.1. Validation Based on “Cloud Assumption”
4.3.2. Validation Based on In-Situ SD Observations
5. Discussion
5.1. The Sensitivity of Different SCF and SD Threshold Combinations
5.2. Comparison with Another Gap-Filling Method
5.3. Dependence of Gap-Filling Performance on Land Cover Types
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Robinson, D.A.; Dewey, K.F.; Heim, R.R. Global Snow Cover Monitoring—An Update. Bull. Am. Meteorol. Soc. 1993, 74, 1689–1696. [Google Scholar] [CrossRef]
- Brown, R.D. Northern hemisphere snow cover variability and change, 1915-97. J. Clim. 2000, 13, 2339–2355. [Google Scholar] [CrossRef]
- Barry, R.G. The role of snow and ice in the global climate system: A review. Polar Geogr. 2002, 26, 235–246. [Google Scholar] [CrossRef]
- Musselman, K.N.; Clark, M.P.; Liu, C.H.; Ikeda, K.; Rasmussen, R. Slower snowmelt in a warmer world. Nat. Clim. Chang. 2017, 7, 214–219. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.; Thorne, R.; Woo, M.K. Using satellite imagery to validate snow distribution simulated by a hydrological model in large northern basins. Hydrol. Process. 2008, 22, 2777–2787. [Google Scholar] [CrossRef]
- Estilow, T.W.; Young, A.H.; Robinson, D.A. A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Syst. Sci. Data 2015, 7, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Frei, A.; Tedesco, M.; Lee, S.; Foster, J.; Hall, D.K.; Kelly, R.; Robinson, D.A. A review of global satellite-derived snow products. Adv. Sp. Res. 2012, 50, 1007–1029. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.G.; Barnett, A.C. Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000–2001 snow year. Remote Sens. Environ. 2003, 86, 162–176. [Google Scholar] [CrossRef]
- Huang, X.D.; Liang, T.G.; Zhang, X.T.; Guo, Z.G. Validation of MODIS snow cover products using Landsat and ground measurements during the 2001–2005 snow seasons over northern Xinjiang, China. Int. J. Remote Sens. 2011, 32, 133–152. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, J.; Li, H.; Yan, L. Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011. J. Appl. Remote Sens. 2013, 7. [Google Scholar] [CrossRef]
- Yang, J.T.; Jiang, L.M.; Menard, C.B.; Luojus, K.; Lemmetyinen, J.; Pulliainen, J. Evaluation of snow products over the Tibetan Plateau. Hydrol. Process. 2015, 29, 3247–3260. [Google Scholar] [CrossRef]
- Simic, A.; Fernandes, R.; Brown, R.; Romanov, P.; Park, W. Validation of VEGETATION, MODIS, and GOES plus SSM/I snow-cover products over Canada based on surface snow depth observations. Hydrol. Process. 2004, 18, 1089–1104. [Google Scholar] [CrossRef]
- Parajka, J.; Bloschl, G. Validation of MODIS snow cover images over Austria. Hydrol. Earth Syst. Sci. 2006, 10, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Gafurov, A.; Kriegel, D.; Vorogushyn, S.; Merz, B. Evaluation of remotely sensed snow cover product in Central Asia. Hydrol. Res. 2013, 44, 506–522. [Google Scholar] [CrossRef]
- Lin, C.-H.; Tsai, P.-H.; Lai, K.-H.; Chen, J.-Y. Cloud Removal from Multitemporal Satellite Images Using Information Cloning. IEEE Trans. Geosci. Remote Sens. 2013, 51, 232–241. [Google Scholar] [CrossRef]
- Tong, J.; Dery, S.J.; Jackson, P.L. Interrelationships between MODIS/Terra remotely sensed snow cover and the hydrometeorology of the Quesnel River Basin, British Columbia, Canada. Hydrol. Earth Syst. Sci. 2009, 13, 1439–1452. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Xie, H.J.; Yao, T.D.; Xue, C.S. Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA. Remote Sens. Environ. 2010, 114, 1662–1675. [Google Scholar] [CrossRef]
- Dietz, A.J.; Kuenzer, C.; Conrad, C. Snow-cover variability in central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. Int. J. Remote Sens. 2013, 34, 3879–3902. [Google Scholar] [CrossRef]
- López-Burgos, V.; Gupta, H.V.; Clark, M. Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach. Hydrol. Earth Syst. Sci. 2013, 17, 1809–1823. [Google Scholar] [CrossRef] [Green Version]
- Parajka, J.; Pepe, M.; Rampini, A.; Rossi, S.; Blöschl, G. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol. 2010, 381, 203–212. [Google Scholar] [CrossRef]
- Liang, T.G.; Zhang, X.T.; Xie, H.J.; Wu, C.X.; Feng, Q.S.; Huang, X.D.; Chen, Q.G. Toward improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements. Remote Sens. Environ. 2008, 112, 3750–3761. [Google Scholar] [CrossRef]
- Gao, Y.; Xie, H.; Lu, N.; Yao, T.; Liang, T. Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra–Aqua MODIS and Aqua AMSR-E measurements. J. Hydrol. 2010, 385, 23–35. [Google Scholar] [CrossRef]
- Wang, X.W.; Xie, H.J.; Liang, T.G.; Huang, X.D. Comparison and validation of MODIS standard and new combination of Terra and Aqua snow cover products in northern Xinjiang, China. Hydrol. Process. 2009, 23, 419–429. [Google Scholar] [CrossRef]
- Dariane, A.B.; Khoramian, A.; Santi, E. Investigating spatiotemporal snow cover variability via cloud-free MODIS snow cover product in Central Alborz Region. Remote Sens. Environ. 2017, 202, 152–165. [Google Scholar] [CrossRef]
- Parajka, J.; Blöschl, G. Spatio-temporal combination of MODIS images—Potential for snow cover mapping. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Gafurov, A.; Bardossy, A. Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Syst. Sci. 2009, 13, 1361–1373. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Menzel, L. Improving the accuracy of MODIS 8-day snow products with in situ temperature and precipitation data. J. Hydrol. 2016, 534, 466–477. [Google Scholar] [CrossRef]
- Krajci, P.; Holko, L.; Perdigao, R.A.P.; Parajka, J. Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins. J. Hydrol. 2014, 519, 1769–1778. [Google Scholar] [CrossRef]
- Da Ronco, P.; De Michele, C. Cloud obstruction and snow cover in Alpine areas from MODIS products. Hydrol. Earth Syst. Sci. 2014, 18, 4579–4600. [Google Scholar] [CrossRef]
- Huang, X.; Deng, J.; Wang, W.; Feng, Q.; Liang, T. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau. Remote Sens. Environ. 2017, 190, 274–288. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Foster, J.L.; Kumar, S.V. Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sens. Environ. 2010, 114, 496–503. [Google Scholar] [CrossRef]
- Dozier, J.; Painter, T.H.; Rittger, K.; Frew, J.E. Time–space continuity of daily maps of fractional snow cover and albedo from MODIS. Adv. Water Res. 2008, 31, 1515–1526. [Google Scholar] [CrossRef]
- Cheng, Q.; Shen, H.; Zhang, L.; Yuan, Q.; Zeng, C. Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model. ISPRS J. Photogramm. Remote Sens. 2014, 92, 54–68. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Y.; Li, L.; Yao, N.; Hu, W.; Yang, D.; Chen, C. Spatiotemporal variations of snow characteristics in Xinjiang, China over 1961–2013. Hydrol. Res. 2018, 49, 1578–1593. [Google Scholar] [CrossRef]
- Ran, Y.H.; Li, X.; Lu, L. Evaluation of four remote sensing based land cover products over China. Int. J. Remote Sens. 2010, 31, 391–401. [Google Scholar] [CrossRef]
- Ran, Y.H.; Li, X.; Lu, L.; Li, Z.Y. Large-scale land cover mapping with the integration of multi-source information based on the Dempster-Shafer theory. Int. J. Geogr. Inf. Sci. 2012, 26, 169–191. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.; Vogelmann, J.E.; Gao, F.; Jin, S. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ. 2011, 115, 1053–1064. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D.; Chen, J. A new geostatistical approach for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ. 2012, 124, 49–60. [Google Scholar] [CrossRef]
- Cheng, Q.; Liu, H.; Shen, H.; Wu, P.; Zhang, L. A Spatial and Temporal Nonlocal Filter-Based Data Fusion Method. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4476–4488. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.F.; Wu, P.H.; Liu, Y.L.; Ai, T.H.; Wang, Y.; Liu, X.P. A spatial and temporal reflectance fusion model considering sensor observation differences. Int. J. Remote Sens. 2013, 34, 4367–4383. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Gao, Y.; Xie, H.J.; Yao, T.D. Developing Snow Cover Parameters Maps from MODIS, AMSR-E, and Blended Snow Products. Photogramm. Eng. Remote Sens. 2011, 77, 351–361. [Google Scholar] [CrossRef]
- Paudel, K.P.; Andersen, P. Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology. Remote Sens. Environ. 2011, 115, 1234–1246. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, S.; Kannan, S.; Baskar, S. Application of modified NSGA-II algorithm to multi-objective reactive power planning. Appl. Soft Comput. 2012, 12, 741–753. [Google Scholar] [CrossRef]
- Demirel, M.C.; Mai, J.; Mendiguren, G.; Koch, J.; Samaniego, L.; Stisen, S. Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model. Hydrol. Earth Syst. Sci. 2018, 22, 1299–1315. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences (International Geophysics Series; V. 91); Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Riggs, G.A.; Hall, D.; Salomonson, V. MODIS Snow Products User Guide; NASA Goddard Space Flight Center Rep.: Laurel, MD, USA, 2006.
- Maurer, E.P.; Rhoads, J.D.; Dubayah, R.O.; Lettenmaier, D.P. Evaluation of the snow-covered area data product from MODIS. Hydrol. Process. 2003, 17, 59–71. [Google Scholar] [CrossRef]
- Xu, W.F.; Ma, H.Q.; Wu, D.H.; Yuan, W.P. Assessment of the Daily Cloud-Free MODIS Snow-Cover Product for Monitoring the Snow-Cover Phenology over the Qinghai-Tibetan Plateau. Remote Sens.-Basel 2017, 9. [Google Scholar] [CrossRef]
- Painter, T.H.; Rittger, K.; McKenzie, C.; Slaughter, P.; Davis, R.E.; Dozier, J. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 2009, 113, 868–879. [Google Scholar] [CrossRef] [Green Version]
- Rittger, K.; Painter, T.H.; Dozier, J. Assessment of methods for mapping snow cover from MODIS. Adv. Water Res. 2013, 51, 367–380. [Google Scholar] [CrossRef]
- Marchane, A.; Jarlan, L.; Hanich, L.; Boudhar, A.; Gascoin, S.; Tavernier, A.; Filali, N.; Le Page, M.; Hagolle, O.; Berjamy, B. Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas mountain range. Remote Sens. Environ. 2015, 160, 72–86. [Google Scholar] [CrossRef]
Observed SD | |||
---|---|---|---|
MODIS SCF | Snow () | a | b |
No snow () | c | d | |
Cloud | e | f |
Year | Mean Cloud Coverage (%) | |
---|---|---|
MOD10A1 | MYD10A1 | |
2001 | 47.20 | - |
2002 | 46.95 | 42.43 * |
2003 | 48.39 | 45.08 |
2004 | 46.52 | 48.37 |
2005 | 44.70 | 45.97 |
2006 | 44.81 | 46.81 |
2007 | 43.60 | 47.31 |
2008 | 43.53 | 46.06 |
2009 | 47.46 | 50.11 |
2010 | 48.69 | 49.88 |
2011 | 46.15 | 48.39 |
2012 | 44.21 | 46.40 |
2013 | 45.84 | 48.49 |
2014 | 46.48 | 48.60 |
2015 | 49.85 | 52.31 |
2016 | 49.33 | 50.54 |
Average | 46.48 | 47.78 |
Cloud Coverage (%) | |||
---|---|---|---|
P25 | P50 | P75 | |
Original terra | 18.18 | ||
Mask image | 47.55 | 55.08 | 69.00 |
Cloud-filled image | 53.59 | 59.78 | 71.87 |
MOYD | 38.84 | 39.93 | 54.56 |
ATF | 19.89 | 14.76 | 22.40 |
NSTF | 0 | 0 | 0 |
P25 | P50 | P75 | P25 | P50 | P75 | P25 | P50 | P75 | P25 | P50 | P75 | P25 | P50 | P75 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MOYD | 0.07 | 0.11 | 0.13 | 0.95 | 0.89 | 0.84 | 0.37 | 0.89 | 1.46 | 0.36 | 0.89 | 1.48 | 0.89 | 0.86 | 0.82 |
ATF | 0.07 | 0.13 | 0.14 | 0.96 | 0.86 | 0.85 | 0.38 | 1.99 | 2.57 | 0.27 | 0.67 | 0.77 | 0.66 | 0.66 | 0.72 |
NSTF | 0.08 | 0.11 | 0.10 | 0.95 | 0.90 | 0.91 | 1.2 | 2.36 | 1.66 | 0.28 | 0.45 | 0.51 | 0.70 | 0.76 | 0.83 |
Final images | 0.07 | 0.12 | 0.13 | 0.96 | 0.88 | 0.86 | 0.59 | 1.65 | 2.07 | 0.3 | 0.72 | 0.93 | 0.91 | 0.75 | 0.80 |
Cloud Coverage (%) | |||
---|---|---|---|
D1 | D2 | D3 | |
Original Terra | 17.50 | 13.12 | 64.68 |
Mask image | 66.03 | 44.06 | 45.50 |
Filled image | 70.43 | 50.44 | 79.59 |
MOYD | 61.63 | 33.52 | 62.96 |
ATF | 26.92 | 21.94 | 27.37 |
NSTF | 0.9 | 1 | 0.95 |
D1 | D2 | D3 | D1 | D2 | D3 | D1 | D2 | D3 | D1 | D2 | D3 | D1 | D2 | D3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MOYD | 0 | 0.06 | 0.19 | 1 | 0.97 | 0.93 | 0 | 0.15 | 0.35 | 0 | 0.34 | 7.82 | 0.94 | 0.90 | 0.95 |
ATF | 0.07 | 0.13 | 0.08 | 0.97 | 0.93 | 0.95 | 0.74 | 0.85 | 0.47 | 0.15 | 1.80 | 1.43 | 0.90 | 0.97 | 0.84 |
NSTF | 0.15 | 0.13 | 0.12 | 0.90 | 0.88 | 0.93 | 4.39 | 2.76 | 2.92 | 0.23 | 1.12 | 1.57 | 0.74 | 0.73 | 0.70 |
Final images | 0.09 | 0.10 | 0.11 | 0.96 | 0.93 | 0.94 | 1.58 | 1.15 | 1.27 | 0.15 | 0.93 | 2.41 | 0.87 | 0.88 | 0.80 |
Land Cover Type | SCF Images | L-C | L-L | L-S | S-C | S-L | S-S | Cloud (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cropland (22) | MOD | 33,854 | 53,865 | 940 | 20,831 | 249 | 10,183 | 45.60 | 53.41 | 0.36 | 0.38 | 1.44 |
MYD | 35,813 | 52,180 | 666 | 20,843 | 227 | 10,193 | 47.24 | 52.01 | 0.35 | 0.36 | 1.05 | |
MOYD | 27,589 | 59,971 | 1099 | 17,494 | 328 | 13,441 | 37.59 | 61.22 | 0.47 | 0.44 | 1.47 | |
ATF | 9022 | 77,985 | 1652 | 10,715 | 638 | 19,910 | 16.46 | 81.63 | 0.69 | 0.64 | 1.65 | |
NSTF | 0 | 85,526 | 3133 | 0 | 1378 | 29,885 | 0 | 96.24 | 1.05 | 1.15 | 2.61 | |
Grasslands and shrubs (11) | MOD | 18,499 | 23,806 | 1421 | 10,666 | 1274 | 4295 | 48.64 | 46.87 | 0.35 | 4.14 | 4.61 |
MYD | 19,929 | 22,974 | 823 | 12,034 | 1424 | 2777 | 53.31 | 42.95 | 0.22 | 5.09 | 2.95 | |
MOYD | 15,328 | 26,790 | 1608 | 9564 | 1715 | 4956 | 41.51 | 52.94 | 0.4 | 4.89 | 4.59 | |
ATF | 5677 | 35,727 | 2322 | 6186 | 2664 | 7385 | 19.78 | 71.9 | 0.6 | 5.54 | 4.83 | |
NSTF | 0 | 40,216 | 3510 | 0 | 4236 | 11,999 | 0 | 87.08 | 0.96 | 6.96 | 5.85 | |
Urban and built up (9) | MOD | 14,317 | 21,174 | 75 | 10,004 | 142 | 3347 | 49.58 | 49.98 | 0.25 | 0.57 | 0.3 |
MYD | 15,102 | 20,434 | 30 | 11,038 | 248 | 2207 | 53.28 | 46.15 | 0.16 | 1.08 | 0.13 | |
MOYD | 11,708 | 23,765 | 93 | 9134 | 276 | 4083 | 42.48 | 56.76 | 0.31 | 0.98 | 0.33 | |
ATF | 4058 | 31,351 | 157 | 6688 | 506 | 6299 | 21.90 | 76.74 | 0.48 | 1.32 | 0.41 | |
NSTF | 0 | 34,914 | 652 | 0 | 1396 | 12,097 | 0 | 95.83 | 0.95 | 2.85 | 1.33 | |
Forests (3) | MOD | 3861 | 7171 | 25 | 3713 | 134 | 1449 | 46.32 | 52.71 | 0.28 | 1.53 | 0.28 |
MYD | 4118 | 6923 | 16 | 3831 | 168 | 1297 | 48.61 | 50.27 | 0.25 | 2 | 0.19 | |
MOYD | 3070 | 7954 | 33 | 3232 | 193 | 1871 | 38.54 | 60.08 | 0.36 | 1.92 | 0.33 | |
ATF | 738 | 10,267 | 52 | 2093 | 335 | 2868 | 17.31 | 80.32 | 0.55 | 2.48 | 0.38 | |
NSTF | 0 | 10,929 | 128 | 0 | 524 | 4772 | 0 | 96.01 | 0.93 | 3.2 | 0.78 | |
Unused (4) | MOD | 6183 | 9470 | 119 | 4069 | 515 | 1448 | 47.02 | 50.07 | 0.26 | 4.46 | 1.03 |
MYD | 6511 | 9181 | 80 | 3938 | 517 | 1577 | 47.92 | 49.34 | 0.27 | 4.55 | 0.7 | |
MOYD | 4882 | 10,751 | 139 | 3443 | 632 | 1957 | 38.18 | 58.26 | 0.35 | 4.69 | 1.03 | |
ATF | 1654 | 13,923 | 195 | 2315 | 919 | 2798 | 18.20 | 76.69 | 0.5 | 5.15 | 1.09 | |
NSTF | 0 | 15,268 | 504 | 0 | 1421 | 4611 | 0 | 91.17 | 0.85 | 6.52 | 2.31 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Huang, C.; Zhang, Y.; Guo, J.; Gu, J. Gap-Filling of MODIS Fractional Snow Cover Products via Non-Local Spatio-Temporal Filtering Based on Machine Learning Techniques. Remote Sens. 2019, 11, 90. https://doi.org/10.3390/rs11010090
Hou J, Huang C, Zhang Y, Guo J, Gu J. Gap-Filling of MODIS Fractional Snow Cover Products via Non-Local Spatio-Temporal Filtering Based on Machine Learning Techniques. Remote Sensing. 2019; 11(1):90. https://doi.org/10.3390/rs11010090
Chicago/Turabian StyleHou, Jinliang, Chunlin Huang, Ying Zhang, Jifu Guo, and Juan Gu. 2019. "Gap-Filling of MODIS Fractional Snow Cover Products via Non-Local Spatio-Temporal Filtering Based on Machine Learning Techniques" Remote Sensing 11, no. 1: 90. https://doi.org/10.3390/rs11010090
APA StyleHou, J., Huang, C., Zhang, Y., Guo, J., & Gu, J. (2019). Gap-Filling of MODIS Fractional Snow Cover Products via Non-Local Spatio-Temporal Filtering Based on Machine Learning Techniques. Remote Sensing, 11(1), 90. https://doi.org/10.3390/rs11010090