GEOBIA 2016: Advances in Object-Based Image Analysis—Linking with Computer Vision and Machine Learning
Conflicts of Interest
References
- Rottensteiner, F.; Sohn, G.; Gerke, M.; Wegner, J.D.; Breitkopf, U.; Jung, J. Results of the isprs benchmark on urban object detection and 3d building reconstruction. ISPRS-J. Photogramm. Remote Sens. 2014, 93, 256–271. [Google Scholar] [CrossRef]
- Radoux, J.; Bogaert, P. Good practices for object-based accuracy assessment. Remote Sens. 2017, 9, 646. [Google Scholar] [CrossRef]
- Tiede, D.; Krafft, P.; Fureder, P.; Lang, S. Stratified template matching to support refugee camp analysis in obia workflows. Remote Sens. 2017, 9, 326. [Google Scholar] [CrossRef]
- Höhle, J. Generating topographic map data from classification results. Remote Sens. 2017, 9, 24. [Google Scholar]
- Knoth, C.; Nust, D. Reproducibility and practical adoption of geobia with open-source software in docker containers. Remote Sens. 2017, 9, 290. [Google Scholar] [CrossRef]
- Grippa, T.; Lennert, M.; Beaumont, B.; Vanhuysse, S.; Stephenne, N.; Wolff, E. An open-source semi-automated processing chain for urban object-based classification. Remote Sens. 2017, 9, 358. [Google Scholar] [CrossRef]
- Jarzabek-Rychard, M.; Maas, H.G. Geometric refinement of als-data derived building models using monoscopic aerial images. Remote Sens. 2017, 9, 282. [Google Scholar] [CrossRef]
- Audebert, N.; Le Saux, B.; Lefevre, S. Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images. Remote Sens. 2017, 9, 368. [Google Scholar] [CrossRef]
- Weinmann, M.; Weinmann, M.; Mallet, C.; Bredif, M. A classification-segmentation framework for the detection of individual trees in dense mms point cloud data acquired in urban areas. Remote Sens. 2017, 9, 277. [Google Scholar] [CrossRef]
- Kamps, M.T.; Bouten, W.; Seijmonsbergen, A.C. Lidar and orthophoto synergy to optimize object-based landscape change: Analysis of an active landslide. Remote Sens. 2017, 9, 805. [Google Scholar] [CrossRef]
- Zou, X.L.; Zhao, G.H.; Li, J.; Yang, Y.X.; Fang, Y. Object based image analysis combining high spatial resolution imagery and laser point clouds for urban land cover. In Xxiii isprs Congress, Commission iii; Halounova, L., Schindler, K., Limpouch, A., Pajdla, T., Safar, V., Mayer, H., Elberink, S.O., Mallet, C., Rottensteiner, F., Bredif, M., et al., Eds.; Copernicus Gesellschaft Mbh: Gottingen, Germany, 2016; Volume 41, pp. 733–739. [Google Scholar]
- Lin, Y.B.; Wang, C.; Cheng, J.; Chen, B.L.; Jia, F.K.; Chen, Z.G.; Li, J. Line segment extraction for large scale unorganized point clouds. ISPRS-J. Photogramm. Remote Sens. 2015, 102, 172–183. [Google Scholar] [CrossRef]
- Yang, B.S.; Dong, Z.; Zhao, G.; Dai, W.X. Hierarchical extraction of urban objects from mobile laser scanning data. ISPRS-J. Photogramm. Remote Sens. 2015, 99, 45–57. [Google Scholar] [CrossRef]
- Gu, H.Y.; Li, H.T.; Yan, L.; Liu, Z.J.; Blaschke, T.; Soergel, U. An object-based semantic classification method for high resolution remote sensing imagery using ontology. Remote Sens. 2017, 9, 329. [Google Scholar] [CrossRef]
- Cui, Y.W.; Chapel, L.; Lefevre, S. Scalable bag of subpaths kernel for learning on hierarchical image representations and multi-source remote sensing data classification. Remote Sens. 2017, 9, 196. [Google Scholar] [CrossRef]
- Csillik, O. Fast segmentation and classification of very high resolution remote sensing data using slic superpixels. Remote Sens. 2017, 9, 243. [Google Scholar] [CrossRef]
- Hossain, M.D.; Chen, D. Segmentation for object-based image analysis (obia): A review of algorithms and challenges from remote sensing perspective. ISPRS-J. Photogramm. Remote Sens. 2019, 150, 115–134. [Google Scholar] [CrossRef]
- Cheng, G.L.; Zhu, F.Y.; Xiang, S.M.; Wang, Y.; Pan, C.H. Accurate urban road centerline extraction from vhr imagery via multiscale segmentation and tensor voting. Neurocomputing 2016, 205, 407–420. [Google Scholar] [CrossRef]
- Vetrivel, A.; Gerke, M.; Kerle, N.; Vosselman, G. Identification of damage in buildings based on gaps in 3d point clouds from very high resolution oblique airborne images. ISPRS-J. Photogramm. Remote Sens. 2015, 105, 61–78. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerle, N.; Gerke, M.; Lefèvre, S. GEOBIA 2016: Advances in Object-Based Image Analysis—Linking with Computer Vision and Machine Learning. Remote Sens. 2019, 11, 1181. https://doi.org/10.3390/rs11101181
Kerle N, Gerke M, Lefèvre S. GEOBIA 2016: Advances in Object-Based Image Analysis—Linking with Computer Vision and Machine Learning. Remote Sensing. 2019; 11(10):1181. https://doi.org/10.3390/rs11101181
Chicago/Turabian StyleKerle, Norman, Markus Gerke, and Sébastien Lefèvre. 2019. "GEOBIA 2016: Advances in Object-Based Image Analysis—Linking with Computer Vision and Machine Learning" Remote Sensing 11, no. 10: 1181. https://doi.org/10.3390/rs11101181
APA StyleKerle, N., Gerke, M., & Lefèvre, S. (2019). GEOBIA 2016: Advances in Object-Based Image Analysis—Linking with Computer Vision and Machine Learning. Remote Sensing, 11(10), 1181. https://doi.org/10.3390/rs11101181