A New Retracking Algorithm for Retrieving Sea Ice Freeboard from CryoSat-2 Radar Altimeter Data during Winter–Spring Transition
Abstract
:1. Introduction
2. Data Sets
2.1. CryoSat-2 Data
2.2. Operational IceBridge Data
2.3. Auxiliary Data
2.3.1. Sea Ice Type Information
2.3.2. Snow Depth and Mean Sea Surface Height Data
3. CS-2 Waveform Fitting Based on Bézier Curves
3.1. Bézier Curves
3.2. Fitting Strategy
4. Sea Ice Freeboard Retrieval
4.1. Discrimination of Surface Types
4.2. Waveform Retracking
4.3. Ice Freeboard Calculation
5. Results
6. Discussion
6.1. Thresholds of the BCF Method
6.2. Uncertainty Caused by Snow Loading
6.3. Comparison between BCF and TFMRA
7. Conclusions
Author Contributions
Funding
Code Source
Acknowledgments
Conflicts of Interest
References
- Price, D.; Beckers, J.; Ricker, R.; Kurtz, N.; Rack, W.; Haas, C.; Helm, V.; Hendricks, S.; Leonard, G.; Langhorne, P.J. Evaluation of CryoSat-2 derived sea-ice freeboard over fast ice in McMurdo Sound, Antarctica. J. Glaciol. 2015, 61, 285–300. [Google Scholar] [CrossRef] [Green Version]
- Aulicino, G.; Fusco, G.; Kern, S.; Budillon, G. Estimation of sea-ice thickness in Ross and Weddell Seas from SSM/I brightness temperatures. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4122–4140. [Google Scholar] [CrossRef]
- Tamura, T.; Ohshima, K.I.; Markus, T.; Cavalieri, D.J.; Nihashi, S.; Hirasawa, N. Estimation of thin ice thickness and detection of fast ice from SSM/I data in the Antarctic Ocean. J. Atmos. Ocean. Technol. 2007, 24, 1757–1772. [Google Scholar] [CrossRef]
- Tateyama, K.; Enomoto., H. Observation of sea-ice thickness fluctuation in the seasonal ice-covered area during 1992–99 winters. Ann. Glaciol. 2001, 33, 449–456. [Google Scholar] [CrossRef]
- Mäkynen, M.; Similä, M. Thin ice detection in the Barents and Kara Seas with AMSR-E and SSMIS radiometer data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5036–5053. [Google Scholar] [CrossRef]
- Mäkynen, M.; Cheng, B.; Similä, M. On the accuracy of thin-ice thickness retrieval using MODIS thermal imagery over Arctic first-year ice. Ann. Glaciol. 2013, 54, 87–96. [Google Scholar] [CrossRef]
- Nakamura, K.; Shibuya, K. Estimation of seasonal changes in the flow of Shirase glacier using JERS-1/SAR image correlation. Polar Sci. 2005, 1, 73–83. [Google Scholar] [CrossRef]
- Laxon, S. Sea ice altimeter processing scheme at the EODC. Int. J. Remote Sens. 1994, 15, 915–924. [Google Scholar] [CrossRef]
- Peacock, N.R.; Laxon, S.W. Sea surface height determination in the Arctic Ocean from ERS altimetry. J. Geophys. Res. Oceans 2004, 109, 1–14. [Google Scholar] [CrossRef]
- Bamber, J.L. Ice sheet altimeter processing scheme. Int. J. Remote Sens. 1994, 15, 925–938. [Google Scholar] [CrossRef]
- Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Kwok, R.; Schweiger, A.; Zhang, J.; Haas, C. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett. 2013, 40, 732–737. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, N.T.; Galin, N.; Studinger, M. An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting. Cryosphere 2014, 8, 1217–1237. [Google Scholar] [CrossRef] [Green Version]
- Giles, K.A.; Laxon, S.W.; Wingham, D.J.; Wallis, D.W.; Krabill, W.B.; Leuschen, C.J.; Mcadoo, D.; Manizade, S.S.; Raney, R.K. Combined airborne laser and radar altimeter measurements over the Fram Strait in May 2002. Remote Sens. Environ. 2007, 111, 182–194. [Google Scholar] [CrossRef]
- Yi, D.; Harbeck, J.P.; Manizade, S.S.; Kurtz, N.T.; Studinger, M.; Hofton, M. Arctic sea ice freeboard retrieval with waveform characteristics for NASA’s Airborne Topographic Mapper (ATM) and Land, Vegetation, and Ice Sensor (LVIS). IEEE Trans. Geosci. Remote Sens. 2014, 53, 1403–1410. [Google Scholar] [CrossRef]
- Djepa, V. Sensitivity analyses of sea ice thickness retrieval from radar altimeter. J. Surv. Mapp. Eng. 2014, 2, 44–45. [Google Scholar]
- Rinne, E.; Similä, M. Utilisation of CryoSat-2 SAR altimeter in operational ice charting. Cryosphere 2016, 10, 121–131. [Google Scholar] [CrossRef] [Green Version]
- European Space Agency (ESA). CryoSat Product Handbook; ESRIN-ESA and Mullard Space Science Laboratory—University College London: London, UK, 2013. [Google Scholar]
- Tonboe, R.; Andersen, S.; Pedersen, L.T. Simulation of the Ku-band Radar altimeter sea ice effective scattering surface. IEEE Geosci. Remote Sens. Lett. 2006, 3, 237–240. [Google Scholar] [CrossRef]
- Ricker, R.; Hendricks, S.; Helm, V.; Skourup, H.; Davidson, M. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation. Cryosphere 2014, 8, 1607–1622. [Google Scholar] [CrossRef] [Green Version]
- Landy, J.C.; Tsamados, M.; Scharien, R.K. A facet-based numerical model for simulating SAR altimeter echoes from heterogeneous sea ice surfaces. IEEE Trans. Geosci. Remote Sens. 2019. [Google Scholar] [CrossRef]
- Rose, S.K. Measurements of Sea Ice by Satellite and Airborne Altimetry. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 28 September 2013. [Google Scholar]
- Davis, C.H. A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters. IEEE Trans. Geosci. Remote Sens. 1997, 35, 974–979. [Google Scholar] [CrossRef]
- Jensen, J.R. Radar altimeter gate tracking: Theory and extension. IEEE Trans. Geosci. Remote Sens. 2002, 37, 651–658. [Google Scholar] [CrossRef]
- Brown, G.S. The average impulse response of a rough surface and its applications. IEEE Trans. Antennas Propag. 1977, 25, 67–74. [Google Scholar] [CrossRef]
- Poisson, J.C.; Quartly, G.D.; Kurekin, A.A.; Thibaut, P.; Hoang, D.; Nencioli, F. Development of an ENVISAT altimetry processor providing sea level continuity between open ocean and Arctic leads. IEEE Trans. Geosci. Remote Sens. 2018, 99, 1–21. [Google Scholar] [CrossRef]
- Passaro, M.; Rose, S.K.; Andersen, O.B.; Boergens, E.; Calafat, F.M.; Dettmering, D.; Benveniste, J. ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters. Remote Sens. Environ. 2018, 211, 456–471. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, N.; Majid, A.A.; Piah, A.R.M. Data fitting by G1 rational cubic Bézier curves using harmony search. Egyptian Informatics J. 2015, 16, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.H.; Scharroo, R. Waveform aliasing in satellite radar altimetry. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1671–1682. [Google Scholar] [CrossRef]
- Kurtz, N.T.; Farrell, S.L.; Studinger, M.; Galin, N. Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data. Cryosphere 2013, 7, 1035–1056. [Google Scholar] [CrossRef] [Green Version]
- Krabill, W. IceBridge ATM L1B Qfit Elevation and Return Strength; Version 1; NASA NSIDC DAAC: Boulder, CO, USA, 2013. Available online: http// data.nasa.gov/dataset/IceBridge-ATM-L1B-Qfit-Elevation-and-Return-Streng/b7nd-qg54 (accessed on 21 April 2019).
- Dominguez, R. IceBridge DMS L1B Geolocated and Orthorectified Images; Version 1; NASA NSIDC DAAC: Boulder, CO, USA, 2010.
- Leuschen, C. IceBridge Snow Radar L1B Geolocated Radar Echo Strength Profiles; Version 1; NASA NSIDC DAAC: Boulder, CO, USA, 2010.
- Krabill, W.B.; Thomas, R.H.; Martin, C.F.; Swift, R.N.; Frederick, E.B. Accuracy of airborne laser altimetry over the Greenland ice sheet. Int. J. Remote Sens. 1994, 16, 1211–1222. [Google Scholar] [CrossRef]
- Schenk, T.; Csathó, B.; Lee, D.C. Quality control issues of airborne laser ranging data and accuracy study in an urban area. In Proceedings of the International Society for Photogrammetry and Remote Sensing Archives, La Jolla, CA, USA, 9–11 November 1999. [Google Scholar]
- Kurtz, N.T.; Farrell, S.L. Large-scale surveys of snow depth on Arctic sea ice from Operation IceBridge. Geophys. Res. Lett. 2011, 38, 582. [Google Scholar] [CrossRef]
- Aaboe, S.; Breivik, L.; Sørensen, A.; Eastwood, S.; Lavergne, T. Global Sea Ice Edge and Type Product User’s Manual; Norwegian Meteorological Service Ocean and Sea Ice Satellite Application Facility, Norwegian Meteorological Institute: Oslo, Norway, 2016; Available online: http// osisaf.met.no/docs/osisaf_cdop3_ss2_pum_sea-ice-edge-type_v2p2.pdf (accessed on 9 May 2019).
- Wingham, D.; Francis, C.; Baker, S.; Bouzinac, C.; Brockley, D.; Cullen, R.; De Chateauthierry, P.; Laxon, S.; Mallow, U.; Mavrocordatos, C. CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields. Adv. Space Res. 2006, 37, 841–871. [Google Scholar] [CrossRef]
- Andersen, O.B.; Knudsen, P. DNSC08 mean sea surface and mean dynamic topography models. J. Geophys. Res. Oceans 2009, 114. [Google Scholar] [CrossRef]
- Piccioni, G.; Andersen, O.B.; Stenseng, L. SAR Altimetry for Mean Sea Surface Determination in the Arctic DTU15MSS. In Proceedings of the Sentinel-3 for Science Workshop, Venice, Italy, 2–5 June 2015. [Google Scholar]
- Stenseng, L.; Andersen, O.; Piccioni, G.; Knudsen, P. Sea surface retracking and classification of Cryosat-2 altimetry observations in the Arctic Ocean. 2015. Available online: ftp.space.dtu.dk/pub/DTU15/DOCUMENTS/MSS/AGU_Steenseng_C41A-0686.pdf (accessed on 9 May 2019).
- Andersen, O.B.; Stenseng, L.; Piccioni, G.; Knudsen, P. The DTU15 MSS (Mean Sea Surface) and DTU15LAT (Lowest Astronomical Tide) reference surface. 2015. Available online: https://ftp.space.dtu.dk/pub/DTU15/DOCUMENTS/MSS/DTU15MSS+LAT.pdf (accessed on 9 May 2019).
- Biswas, P.; Langdon, P. Multimodal Intelligent Eye-Gaze Tracking System. Int. J. Human Comput. Interact. 2015, 31, 277–294. [Google Scholar] [CrossRef]
- Borges, C.F.; Pastva, T. Total least squares fitting of Bézier and B-spline curves to ordered data. Comput. Aided Geom. Des. 2002, 19, 275–289. [Google Scholar] [CrossRef]
- Lang, H.; Zhang, J.; Xi, Y.; Zhang, X.; Meng, J. Fast SAR Sea Surface Distribution Modeling by Adaptive Composite Cubic Bézier Curve. IEEE Geosci. Remote Sens. Lett. 2016, 13, 505–509. [Google Scholar] [CrossRef]
- Wagner, M.A.F.; Wilson, J.R. Using Univariate Bézier Distributions to Model Simulation Input Processes. IIE Trans. 1994, 28, 699–711. [Google Scholar] [CrossRef]
- Drinkwater, M.R. Ku Band Airborne Radar Altimeter Observations of Marginal Sea Ice During the 1984 Marginal Ice Zone Experiment. J. Geophys. Res. Oceans 1991, 96, 4555–4572. [Google Scholar] [CrossRef]
- Paul, S.; Hendricks, S.; Rinne, E. Sea Ice Thickness Algorithm Theoretical Basis Document (ATBD), SICCI-P2-ATBD(SIT). Version 1, ESA Document, 2017. Available online: http//icdc.cen.uni-hamburg.de/fileadmin/user_upload/ESA_Sea-Ice CV_Phase2/SICCI_P2_ATBD_D2.1__SIT__Issue_1.0.pdf (accessed on 9 May 2019).
- Warren, S.G.; Rigor, I.G.; Untersteiner, N.; Radionov, V.F.; Bryazgin, N.N.; Aleksandrov, Y.I.; Colony, R. Snow Depth on Arctic Sea Ice. J. Climate 1999, 12, 1814–1829. [Google Scholar] [CrossRef]
- Willatt, R.C.; Giles, K.A.; Laxon, S.W.; Stone-Drake, L.; Worby, A.P. Field investigations of Ku-Band radar penetration into snow cover on Antarctic sea Ice. IEEE Trans. Geosci. Remote Sens. 2009, 48, 365–372. [Google Scholar] [CrossRef]
- Willatt, R.; Laxon, S.; Giles, K.; Cullen, R.; Haas, C.; Helm, V. Ku-band radar penetration into snow cover on Arctic sea ice using airborne data. Ann. Glaciol. 2011, 52, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Giles, K.A.; Hvidegaard, S.M. Comparison of space borne radar altimetry and airborne laser altimetry over sea ice in the Fram Strait. Int. J. Remote Sens. 2006, 27, 3105–3113. [Google Scholar] [CrossRef]
- Kwok, R. Simulated effects of a snow layer on retrieval of CryoSat-2 sea ice freeboard. Geophys. Res. Lett. 2014, 41, 5014–5020. [Google Scholar] [CrossRef] [Green Version]
- Ricker, R.; Hendricks, S.; Perovich, D.K.; Helm, V.; Gerdes, R. Impact of snow accumulation on CryoSat-2 range retrievals over Arctic sea ice: An observational approach with buoy data. Geophys. Res. Lett. 2015, 42, 4447–4455. [Google Scholar] [CrossRef] [Green Version]
- Nandan, V.; Geldsetzer, T.; Yackel, J.; Mahmud, M.; Scharien, R.; Howell, S.; King, J.; Ricker, R.; Else, B. Effect of snow salinity on CryoSat-2 Arctic first-year sea ice freeboard measurements. Geophys. Res. Lett. 2017, 44, 10,419–10,426. [Google Scholar] [CrossRef]
- Xia, W.; Xie, H. Assessing three waveform retrackers on sea ice freeboard retrieval from Cryosat-2 using Operation IceBridge Airborne altimetry datasets. Remote Sens. Environ. 2017, 204, 456–471. [Google Scholar] [CrossRef]
- Armitage, T.; Davidson, M. Using the interferometric capabilities of the ESA CryoSat-2 mission to improve the accuracy of sea ice freeboard retrievals. IEEE Trans. Geosci. Remote Sens. 2014, 52, 529–536. [Google Scholar] [CrossRef]
LRM | SAR | SARIn | |
---|---|---|---|
Center frequency | 13.575 GHz | ||
Bandwidth | 350 MHz | ||
Pulse Repetition Frequency | 1.97 kHz | 17.8 kHz | 17.8 kHz |
Range window | ~60 m | ~60 m | ~240 m |
Samples per echo | 128 | 256 | 1024 |
Sample interval | 0.4684 m | 0.2342 m | 0.2342 m |
Parm | (a) | (b) | (c) | (d) | Parm | (a) | (b) | (c) | (d) | |
---|---|---|---|---|---|---|---|---|---|---|
Leads (le) | RMSE 1 | 0.0822 | 0.0902 | 0.0097 | 0.0072 | RMSE 2 | 3.13 | 4.77 | 0.38 | 0.27 |
Leads (w) | RMSE 1 | 0.1298 | 0.1335 | 0.0437 | 0.0128 | RMSE 2 | 4.37 | 4.47 | 1.31 | 0.39 |
ACT 3 (s) | 0.1712 | 0.1730 | 0.1851 | 0.1510 | ACT(s) | 0.1712 | 0.1730 | 0.1851 | 0.1510 | |
Sea ice (le) | RMSE 1 | 0.0566 | 0.0447 | 0.0298 | 0.0078 | RMSE2 | 2.57 | 4.12 | 2.55 | 1.62 |
Sea ice (w) | RMSE 1 | 0.0776 | 0.0589 | 0.0438 | 0.0335 | RMSE2 | 2.19 | 4.02 | 2.26 | 1.51 |
ACT(s) | 0.1816 | 0.1855 | 0.1901 | 0.1715 | ACT(s) | 0.1816 | 0.1855 | 0.1901 | 0.1715 |
Thresholds (Leads, Ice) | 50%, 50% | 70%, 50% | 70%, 70% | 90%, 50% | 90%, 70% | 90%, 90% | 100%, 50% | 100%, 70% | 100%, 90% |
---|---|---|---|---|---|---|---|---|---|
MD 1 | 11.73 | 11.47 | 36.30 | 14.49 | 28.90 | 65.98 | 21.89 | 22.45 | 55.79 |
RMSE | 15.41 | 14.05 | 43.50 | 17.16 | 37.22 | 73.65 | 25.16 | 30.72 | 64.83 |
Correlation | 0.4223 | 0.4295 | 0.1596 | 0.4074 | 0.1507 | 0.0292 | 0.3540 | 0.1298 | 0.0156 |
FYI | |||||||||
MD 1 | 10.11 | 9.72 | 27.21 | 14.29 | 20.32 | 49.70 | 24.23 | 17.34 | 38.80 |
RMSE | 14.74 | 11.58 | 33.04 | 16.71 | 27.05 | 56.35 | 27.03 | 22.69 | 48.06 |
Correlation | 0.1247 | 0.0488 | -0.0259 | 0.0433 | −0.0266 | −0.0239 | 0.0085 | −0.0413 | −0.0350 |
MYI | |||||||||
MD 1 | 12.29 | 11.82 | 38.23 | 14.47 | 30.78 | 69.57 | 21.27 | 23.61 | 59.62 |
RMSE | 16.09 | 14.50 | 45.38 | 17.19 | 39.04 | 76.91 | 24.61 | 32.19 | 67.99 |
Correlation | 0.4348 | 0.4384 | 0.2117 | 0.4203 | 0.2052 | 0.1099 | 0.3802 | 0.1925 | 0.1024 |
Thresholds (Leads, Ice) | 50%, 50% | 70%, 50% | 70%, 70% | 90%, 50% | 90%, 70% | 90%, 90% | 100%, 50% | 100%, 70% | 100%, 90% |
---|---|---|---|---|---|---|---|---|---|
MD 1 | 15.21 | 13.63 | 35.54 | 16.24 | 26.96 | 66.55 | 20.05 | 23.64 | 60.44 |
RMSE | 23.75 | 21.06 | 46.71 | 21.73 | 39.90 | 79.39 | 24.89 | 36.67 | 74.50 |
Correlation | 0.2879 | 0.2877 | 0.0853 | 0.2838 | 0.0821 | –0.0304 | 0.2622 | 0.0710 | −0.0373 |
March 2015 | April 2016 | |||||||
---|---|---|---|---|---|---|---|---|
Number of grid points | 374 | 184 | ||||||
Retracker | OIB | BCF | TFMRA | L2I | OIB | BCF | TFMRA | L2I |
Mean ice freeboard | 21.46 ± 8.59 | 27.62 ± 14.60 | 29.83 ± 14.62 | 30.24 ± 9.55 | 23.52 ± 10.28 | 27.15 ± 8.68 | 22.53 ± 11.07 | 24.07 ± 11.82 |
MD 1 | 9.22 | 10.41 | 10.01 | 7.79 | 8.16 | 8.42 | ||
RMSE | 15.14 | 15.99 | 12.42 | 10.42 | 10.68 | 11.03 | ||
Correlation | 0.3705 | 0.3917 | 0.5152 | 0.4598 | 0.5079 | 0.5059 |
March 2015 | April 2016 | |||||||
---|---|---|---|---|---|---|---|---|
Retracker | OIB | BCF | TFMRA | L2I | OIB | BCF | TFMRA | L2I |
Number of grid points in FYI | 59 | 45 | ||||||
Number of grid points in MYI | 315 | 139 | ||||||
OIB Snow Depth in FYI | 15.03 ± 7.01 | 8.39 ± 5.34 | ||||||
OIB Snow Depth in MYI | 23.37 ± 9.67 | 24.87 ± 11.17 | ||||||
Mean FYI freeboard | 19.39 ± 5.92 | 19.17 ± 8.21 | 21.43 ± 8.32 | 24.11 ± 9.45 | 17.81 ± 18.17 | 22.02 ± 4.94 | 14.36 ± 5.49 | 15.47 ± 5.86 |
MD 1 for FYI | 6.70 | 6.88 | 7.89 | 13.42 | 12.02 | 12.60 | ||
RMSE for FYI | 9.03 | 9.27 | 10.55 | 18.59 | 18.65 | 18.60 | ||
Correlation | 0.2015 | 0.2135 | 0.2460 | 0.1063 | 0.0844 | 0.07539 | ||
Mean MYI freeboard | 21.90 ± 9.05 | 28.78 ± 14.86 | 30.97 ± 14.87 | 31.14 ± 9.44 | 25.81 ± 10.27 | 28.68 ± 9.00 | 24.99 ± 11.21 | 26.67 ± 12.00 |
MD for MYI | 9.67 | 11.00 | 10.48 | 7.74 | 8.59 | 8.87 | ||
RMSE for MYI | 15.80 | 16.71 | 12.83 | 10.50 | 10.99 | 11.39 | ||
Correlation | 0.3701 | 0.3926 | 0.5340 | 0.4522 | 0.4787 | 0.4851 |
Thresholds (Leads, Ice) | 50%, 50% | 70%, 50% | 70%, 70% | 90%, 50% | 90%, 70% | 90%, 90% | 100%, 50% | 100%, 70% | 100%, 90% |
---|---|---|---|---|---|---|---|---|---|
2015 | |||||||||
MD 1 | 14.58 | 12.75 | 40.46 | 14.13 | 33.46 | 69.86 | 19.37 | 26.82 | 60.91 |
RMSE | 18.92 | 16.26 | 48.77 | 17.33 | 43.04 | 78.27 | 22.95 | 37.35 | 70.69 |
Correlation | 0.3428 | 0.3486 | 0.2434 | 0.3296 | 0.2328 | 0.1885 | 0.2884 | 0.2152 | 0.1772 |
2016 | |||||||||
MD 1 | 19.75 | 12.85 | 50.97 | 14.62 | 41.63 | 80.16 | 16.54 | 30.06 | 66.78 |
RMSE | 24.09 | 17.17 | 58.34 | 17.82 | 50.22 | 89.75 | 19.34 | 39.70 | 77.82 |
Correlation | 0.3403 | 0.3968 | −0.0109 | 0.2669 | −0.0085 | −0.1568 | 0.3538 | −0.0066 | −0.1557 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Similä, M.; Dierking, W.; Zhang, X.; Ke, C.; Liu, M.; Wang, M. A New Retracking Algorithm for Retrieving Sea Ice Freeboard from CryoSat-2 Radar Altimeter Data during Winter–Spring Transition. Remote Sens. 2019, 11, 1194. https://doi.org/10.3390/rs11101194
Shen X, Similä M, Dierking W, Zhang X, Ke C, Liu M, Wang M. A New Retracking Algorithm for Retrieving Sea Ice Freeboard from CryoSat-2 Radar Altimeter Data during Winter–Spring Transition. Remote Sensing. 2019; 11(10):1194. https://doi.org/10.3390/rs11101194
Chicago/Turabian StyleShen, Xiaoyi, Markku Similä, Wolfgang Dierking, Xi Zhang, Changqing Ke, Meijie Liu, and Manman Wang. 2019. "A New Retracking Algorithm for Retrieving Sea Ice Freeboard from CryoSat-2 Radar Altimeter Data during Winter–Spring Transition" Remote Sensing 11, no. 10: 1194. https://doi.org/10.3390/rs11101194
APA StyleShen, X., Similä, M., Dierking, W., Zhang, X., Ke, C., Liu, M., & Wang, M. (2019). A New Retracking Algorithm for Retrieving Sea Ice Freeboard from CryoSat-2 Radar Altimeter Data during Winter–Spring Transition. Remote Sensing, 11(10), 1194. https://doi.org/10.3390/rs11101194