Validation of 7 Years in-Flight HY-2A Calibration Microwave Radiometer Products Using Numerical Weather Model and Radiosondes
Abstract
:1. Introduction
2. Materials and Methods
2.1. HY-2A CMR Data
2.2. Introduction of Numerical Weather Model
2.3. Radiosonde Data
3. Results
3.1. Gglobal Distribution of Wet Tropospheric Delay and Water Vapor
3.2. HY-2A CMR Products Preprocessing
3.3. Comparison between HY-2A CMR and Numerical Weather Model
3.3.1. Overall Accuracy Assessment of HY-2A Calibration Microwave Radiometer
3.3.2. HY-2A CMR Products Spatial Analysis
3.3.3. HY-2A CMR Products Temporal Analysis
3.3.4. Validation of HY-2A CMR Products based on Radiosonde
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, N.; Han, G.; Yang, J.; Chen, D. Hurricane sandy storm surges observed by hy-2a satellite altimetry and tide gauges. J. Geophys. Res. Ocean. 2014, 119, 4542–4548. [Google Scholar] [CrossRef]
- Cui, W.; Wang, W.; Jie, Z.; Yang, J.; Jia, Y. Improvement of sea surface height measurements of hy-2a satellite altimeter using jason-2. Mar. Geod. 2018, 41, 1–17. [Google Scholar] [CrossRef]
- Zheng, G.; Yang, J.; Li, X.; Zhou, L.; Ren, L.; Chen, P.; Zhang, H.; Lou, X. Using artificial neural network ensembles with crogging resampling technique to retrieve sea surface temperature from hy-2a scanning microwave radiometer data. IEEE Trans. Geosci. Remote Sens. 2018, 57, 985–1000. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Wang, H.; Zhao, J.; Li, Y. Acmr system description and performance. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 5179–5182. [Google Scholar]
- Zheng, G.; Yang, J.; Ren, L. Retrieval models of water vapor and wet tropospheric path delay for the hy-2a calibration microwave radiometer. J. Atmos. Ocean. Technol. 2014, 31, 1516–1528. [Google Scholar] [CrossRef]
- Ruf, C.S.; Keihm, S.J.; Subramanya, B.; Janssen, M.A. Topex/poseidon microwave radiometer performance and in-flight calibration. J. Geophys. Res. Ocean. 1994, 99, 24915–24926. [Google Scholar] [CrossRef]
- Obligis, E.; Tran, N.; Eymard, L. An assessment of jason-1 microwave radiometer measurements and products. Mar. Geod. 2004, 27, 255–277. [Google Scholar] [CrossRef]
- Brown, S. A novel near-land radiometer wet path-delay retrieval algorithm: Application to the jason-2/ostm advanced microwave radiometer. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1986–1992. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Fan, C.; Wang, J. Validation of the “hy-2” altimeter wet tropospheric path delay correction based on radiosonde data. Acta Oceanol. Sin. 2014, 33, 48–53. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Li, Y.; Zhao, J.; Liu, Y. Preliminary analysis of hy-2 acmr data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 177–180. [Google Scholar]
- Zheng, G.; Yang, J.; Ren, L.; Zhou, W.; Huang, L. The preliminary cross-calibration of the hy-2a calibration microwave radiometer with the jason-1/2 microwave radiometers. Int. J. Remote Sens. 2014, 35, 4515–4531. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, D.; Wang, Z.; Li, Y. Validation of hy-2a acmr retrieval algorithms and product. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 411–413. [Google Scholar]
- Obligis, E.; Eymard, L.; Tran, N.; Labroue, S.; Femenias, P. First three years of the microwave radiometer aboard envisat: In-flight calibration, processing, and validation of the geophysical products. J. Atmos. Ocean. Technol. 2006, 23, 802–814. [Google Scholar] [CrossRef]
- Brown, S. Maintaining the long-term calibration of the jason-2/ostm advanced microwave radiometer through intersatellite calibration. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1531–1543. [Google Scholar] [CrossRef]
- Jiang, M.; Xu, K.; Liu, Y. Calibration and validation of reprocessed hy-2a altimeter wave height measurements using data from buoys, jason-2, cryosat-2, and saral/altika. J. Atmos. Ocean. Technol. 2018, 35, 1331–1352. [Google Scholar] [CrossRef]
- Robinson, I.S. Measuring the Oceans from Space: The Principles and Methods of Satellite Oceanography; Springer Science & Business Media: Berlin/Heidelberger, Germany, 2004. [Google Scholar]
- Wang, Z.; Zhang, D. Simulation on retrieving of atmospheric wet path delay by microwave radiometer on hy-2 satellite. In Proceedings of the 2008 China-Japan Joint Microwave Conference, Shanghai, China, 10–12 September 2008; IEEE: Piscataway, NJ, USA, 2009; pp. 665–668. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, d.P. The era-interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Z. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ecmwf and ncep reanalyses, radiosonde, gps, and microwave satellite. J. Geophys. Res. Atmos. 2016, 121, 11–442. [Google Scholar] [CrossRef]
- Landskron, D.; Böhm, J. Vmf3/gpt3: Refined discrete and empirical troposphere mapping functions. J. Geod. 2018, 92, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Kouba, J. Implementation and testing of the gridded vienna mapping function 1 (vmf1). J. Geod. 2008, 82, 193–205. [Google Scholar] [CrossRef]
- Karl Hennermann, P.B. Era-interim: Surface Elevation and Orography. Available online: https://confluence.ecmwf.int/pages/viewpage.action?pageId=79955800 (accessed on 15 March 2019).
- Gesch, D.; Greenlee, S. Gtopo30 Documentation; 12201 Sunrise Valley Dr.; US Department of the Interior US Geological Survey: Reston, VA, USA, 1996.
- Obligis, E.; Desportes, C.; Eymard, L.; Fernandes, M.; Lázaro, C.; Nunes, A. Tropospheric corrections for coastal altimetry. In Coastal Altimetry; Springer: Berlin/Heidelberger, Germany, 2011. [Google Scholar]
- Fernandes, M.J.; Bastos, L.; Antunes, M. Coastal satellite altimetry-methods for data recovery and validation. In Proceedings of the 3rd Meeting of the International Gravity and Geoid Commission “Gravity and Geoid; Thessaloniki, Greece, 26–30 August 2002, Citeseer: Princeton, NJ, USA, 2002; pp. 26–30. [Google Scholar]
- Fernandes, M.J.; Lázaro, C. Gpd+ wet tropospheric corrections for cryosat-2 and gfo altimetry missions. Remote Sens. 2016, 8, 851. [Google Scholar] [CrossRef]
- Bock, O.; Nuret, M. Verification of nwp model analyses and radiosonde humidity data with gps precipitable water vapor estimates during amma. Weather Forecast. 2009, 24, 1085–1101. [Google Scholar] [CrossRef]
- Lee, S.-W.; Kouba, J.; Schutz, B.; Kim, D.H.; Lee, Y.J. Monitoring precipitable water vapor in real-time using global navigation satellite systems. J. Geod. 2013, 87, 923–934. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Z.; Maximilian, S.; Zus, F.; Gerland, S.; Ramatschi, M.; Ge, M.; Wickert, J.; Schuh, A.H. Retrieving precipitable water vapor from shipborne multi-gnss observations. Geophys. Res. Lett. 2019, 46, 5000–5008. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Chen, G.; Wu, Z. Evaluation of hy-2a satellite-borne water vapor radiometer with shipborne gps and glonass observations over the indian ocean. GPS Solut. 2019, 23, 87. [Google Scholar] [CrossRef]
Main Performance Indicators | Channel 1 | Channel 2 | Channel 3 |
---|---|---|---|
Center Frequency | 18.7 GHz | 23.8 GHz | 37 GHz |
Bandwidth | 250 MHz | 250 MHz | 500 MHz |
Antenna Beamwidth | 1.4° | 1.1° | 0.6° |
Integration Time | 200 ms | 200 ms | 200 ms |
Calibrated Ground Footprint (from 965 km) | 24 km | 19 km | 10 km |
Sensitivity | 0.4 K | 0.4 K | 0.4 K |
Calibration Accuracy | 1 K | 1 K | 1 K |
HY-2A Product | Region | Mean | STD | RMS 1 |
---|---|---|---|---|
WTC (cm) | Global | 0.71 | 2.17 | 2.29 (22.3%) |
Tropical | 1.07 | 2.33 | 2.56 (11.4%) | |
Mid-latitude | 0.51 | 2.06 | 2.12 (25.9%) | |
Polar Area | 0.52 | 1.98 | 2.05 (41.8%) | |
PWV (mm) | Global | 1.04 | 3.44 | 3.48 (22.4%) |
Tropical | 1.42 | 3.77 | 4.03 (11.3%) | |
Mid-latitude | 0.81 | 3.13 | 3.24 (26.3%) | |
Polar Area | 0.88 | 3.04 | 3.16 (42.1%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Wang, J.; Liu, Y.; He, X.; Liu, Y.; Xu, W. Validation of 7 Years in-Flight HY-2A Calibration Microwave Radiometer Products Using Numerical Weather Model and Radiosondes. Remote Sens. 2019, 11, 1616. https://doi.org/10.3390/rs11131616
Wu Z, Wang J, Liu Y, He X, Liu Y, Xu W. Validation of 7 Years in-Flight HY-2A Calibration Microwave Radiometer Products Using Numerical Weather Model and Radiosondes. Remote Sensing. 2019; 11(13):1616. https://doi.org/10.3390/rs11131616
Chicago/Turabian StyleWu, Zhilu, Jungang Wang, Yanxiong Liu, Xiufeng He, Yang Liu, and Wenxue Xu. 2019. "Validation of 7 Years in-Flight HY-2A Calibration Microwave Radiometer Products Using Numerical Weather Model and Radiosondes" Remote Sensing 11, no. 13: 1616. https://doi.org/10.3390/rs11131616
APA StyleWu, Z., Wang, J., Liu, Y., He, X., Liu, Y., & Xu, W. (2019). Validation of 7 Years in-Flight HY-2A Calibration Microwave Radiometer Products Using Numerical Weather Model and Radiosondes. Remote Sensing, 11(13), 1616. https://doi.org/10.3390/rs11131616