A Fast High-Resolution Imaging Algorithm for Helicopter-Borne Rotating Array SAR Based on 2-D Chirp-Z Transform
Abstract
:1. Introduction
2. Overall Analysis of the Helicopter-Borne RoASAR System
2.1. Geometric Model of the Helicopter-Borne RoASAR System
2.2. Resolution Analysis of the Helicopter-Borne RoASAR System
3. Fast Imaging Algorithm for Helicopter-Borne RoASAR Based on 2-D CZT
3.1. 2-D Spectrum Derivation Based on MSR
3.2. Range Processing
3.3. Azimuth Processing
3.4. Some Considerations of the Proposed Method in Applications
4. Simulation Results and Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Kreitmair-Steck, W.; Wolframm, A.P. Heliradar-a Rotating Antenna Synthetic Aperture Radar for Helicopter all Weather Operations. In Proceedings of the AGARD 59th Guidance and Control Panel, Pratica di Mare, Italy, 20–25 October 1994; pp. 56–62. [Google Scholar]
- Joelianto, E.; Budiyono, A.; Wijayanti, I.E.; Megawati, N.Y. Model Predictive Control for Obstacle Avoidance as Hybrid Systems of Small Scale Helicopter. In Proceedings of the 2013 3rd International Conference on Instrumentation Control and Automation, Ungasan, Indonesia, 28–30 August 2013. [Google Scholar]
- Kwag, Y.K.; Kang, J.W. Obstacle Awareness and Collision Avoidance Radar Sensor System for Low-Altitude Flying Smart UAV. In Proceedings of the 23rd Digital Avionics Systems Conference, Salt Lake City, UT, USA, 28–28 October 2004. [Google Scholar]
- Kreitmair, W. Heliradar: The Pilot’s Eye for Flights in Adverse Weather Conditions. In SPIE 1995 Aerosense Symposium; Enhanced and Synthetic Vision: Orlando, FL, USA, 1995. [Google Scholar]
- Guo, H.D.; Li, X.W. Characteristics and application expansion of new generation SAR earth observation technology. Chin. Sci. Bull. 2011, 56, 1155–1168. [Google Scholar] [CrossRef]
- Jakowatz, C.V., Jr.; Wahl, D.E.; Yocky, D.A. Beamforming as a Foundation for Spotlight-Mode SAR Image Formation by Backprojection. In Proceedings of the SPIE-The International Society for Optical Engineering, Orlando, FL, USA, 15 April 2008; Volume 6970. [Google Scholar]
- Ulander, L.M.; Hellsten, H.; Stenstrom, G. Synthetic-aperture radar processing using fast factorized back-projection. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 760–776. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, H.-L.; Qiao, Z.-J.; Xing, M.D.; Bao, Z. Integrating Autofocus Techniques with Fast Factorized Back-Projection for High-Resolution Spotlight SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1394–1398. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, L.; Zhao, L.; Bi, G. Quasi-Polar-Based FFBP Algorithm for Miniature UAV SAR Imaging Without Navigational Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7053–7065. [Google Scholar] [CrossRef]
- Chen, S.B.; Chun-sheng, J.L. Operation mode of circular trace scanning SAR for wide observation. J. Electron. Inf. Technol. 2008, 30, 2805–2808. [Google Scholar]
- Li, D.; Liao, G.S.; Xu, Q.; Wang, W. High resolution imaging algorithm for helicopter-borne rotating synthetic aperture radar. J. Syst. Eng. Electron. 2013, 35, 1389–1395. [Google Scholar]
- Zhang, J.; Liao, G.S.; Xu, J.W.; Yang, K.; Zhu, S. Research on high resolution wavenumber-domain imaging algorithm for ROSAR. J. Syst. Eng. Electron. 2017, 39, 1127–1234. [Google Scholar]
- Li, D.; Liao, G.; Yang, L. Modified Omega-K algorithm for processing helicopter-borne frequency modulated continuous waveform rotating synthetic aperture radar data. J. Syst. Eng. Electron. 2015, 26, 476–485. [Google Scholar] [CrossRef]
- Adams, J.W.; Bayma, R.W.; Lawrence, M.E.; Petrosian, L. On the modified chirp z transform for synthetic aperture radar systems. IEEE Trans. Signal Process. 1991, 39, 953–955. [Google Scholar] [CrossRef]
- Li, D.; Liu, H.; Liao, Y.; Gui, X. A Novel Helicopter-Borne Rotating SAR Imaging Model and Algorithm Based on Inverse Chirp-Z Transform Using Frequency-Modulated Continuous Wave. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1–5. [Google Scholar]
- Neo, Y.L.; Wong, F.; Cumming, I.G. A two-dimensional spectrum for bistatic SAR processing using series reversion. IEEE Geosci. Remote Sens. Lett. 2007, 4, 93–96. [Google Scholar] [CrossRef]
- Lanari, R. A new method for the compensation of the SAR range cell migration based on the chirp-z transform. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1296–1299. [Google Scholar] [CrossRef]
- Zhou, P.; Zhou, S.; Xiong, T.; Li, Y.C.; Xing, M.D. A chirp-z transform imaging algorithm for missile-borne SAR with diving maneuver based on the method of series reversion. J. Electron. Inf. Technol. 2010, 32, 2861–2867. [Google Scholar] [CrossRef]
- Li, C.; He, M. Imaging algorithm for geosynchronous orbit SAR based on chirp-z transform and azimuth scaling. J. Electron. Inf. Technol. 2015, 37, 1736–1742. [Google Scholar]
- Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data, 2nd ed.; Artech House: Norwood, MA, USA, 2005; pp. 249–260. [Google Scholar]
- Yang, W.; Chen, J.; Zeng, H.; Wang, P.; Liu, W. A wide-swath spaceborne TOPS SAR image formation algorithm based on chirp scaling and chirp-z transform. Sensors 2016, 16, 2095. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Zhang, Y.; Chang, Y.; Liu, E.; Tang, X.; Zhang, J. Focus High-Resolution Highly Squint SAR Data Using Azimuth-Variant Residual RCMC and Extended Nonlinear Chirp Scaling Based on a New Circle Model. IEEE Geosci. Remote Sens. Lett. 2018, 15, 547–551. [Google Scholar] [CrossRef]
- Bi, H.; Zhang, B.; Zhu, X.; Hong, W. Azimuth-range decouple-based L 1 regularization method for wide ScanSAR imaging via extended chirp scaling. J. Appl. Remote Sens. 2017, 11, 15007. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, G.-C.; Xia, X.-G.; Xing, M.; Yang, J.; Bao, Z. An Azimuth Frequency Non-Linear Chirp Scaling (FNCS) Algorithm for TOPS SAR Imaging with High Squint Angle. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 213–221. [Google Scholar]
- Su, Y.X.; Li, D. Motion compensation and imaging algorithm for helicopter-borne rotating synthetic aperture radar. Radar Sci. Technol. 2018, 16, 383–390. [Google Scholar]
- Xing, M.; Jiang, X.; Wu, R.; Zhou, F.; Bao, Z. Motion Compensation for UAV SAR Based on Raw Radar Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2870–2883. [Google Scholar] [CrossRef]
Parameters Name | Value |
---|---|
Rotator length | 2 m |
Rotating angle speed | 15 rad/s |
Platform altitude | 1000 m |
Transmit bandwidth | 300 MHz |
Carrier frequency | 10 GHz |
Pulse repetition frequency | 10 kHz |
Reference slant range | 2000 m |
Azimuth beam width | 80° |
Scene size (range*azimuth) | 700 m*70° |
Approach | Range Displacement (m) | Azimuth Displacement (°) | ||||||
---|---|---|---|---|---|---|---|---|
PT1 | PT2 | PT3 | PT4 | PT1 | PT2 | PT3 | PT4 | |
BP | −0.24 | 0 | +0.25 | 0 | 0 | −0.053 | 0 | +0.055 |
Omega-k | −0.24 | 0 | +0.25 | 0 | 0 | −0.055 | 0 | +0.059 |
SPECAN | −0.52 | 0 | +0.23 | 0 | 0 | −0.110 | 0 | +0.109 |
Proposed method | −0.25 | 0 | +0.25 | 0 | 0 | −0.057 | 0 | +0.061 |
Approach | Range | Azimuth | ||||
---|---|---|---|---|---|---|
PSLR (dB) | ISLR (dB) | Resolution (m) | PSLR (dB) | ISLR (dB) | Resolution (°) | |
BP | −13.29 | −9.76 | 0.55 | −13.22 | −9.72 | 0.1154 |
Omega-k | −13.24 | −9.69 | 0.59 | −12.74 | −9.68 | 0.1263 |
Proposed method | −13.22 | −9.68 | 0.59 | −12.96 | −9.64 | 0.1290 |
theoretical | −13.4 | −9.80 | 0.50 | −13.4 | −9.80 | 0.1117 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, M.; Li, D.; Tang, X.; Zeng, C.; Li, W.; Xu, L. A Fast High-Resolution Imaging Algorithm for Helicopter-Borne Rotating Array SAR Based on 2-D Chirp-Z Transform. Remote Sens. 2019, 11, 1669. https://doi.org/10.3390/rs11141669
Qin M, Li D, Tang X, Zeng C, Li W, Xu L. A Fast High-Resolution Imaging Algorithm for Helicopter-Borne Rotating Array SAR Based on 2-D Chirp-Z Transform. Remote Sensing. 2019; 11(14):1669. https://doi.org/10.3390/rs11141669
Chicago/Turabian StyleQin, Mengyi, Dong Li, Xianhui Tang, Cao Zeng, Wenjun Li, and Liying Xu. 2019. "A Fast High-Resolution Imaging Algorithm for Helicopter-Borne Rotating Array SAR Based on 2-D Chirp-Z Transform" Remote Sensing 11, no. 14: 1669. https://doi.org/10.3390/rs11141669
APA StyleQin, M., Li, D., Tang, X., Zeng, C., Li, W., & Xu, L. (2019). A Fast High-Resolution Imaging Algorithm for Helicopter-Borne Rotating Array SAR Based on 2-D Chirp-Z Transform. Remote Sensing, 11(14), 1669. https://doi.org/10.3390/rs11141669