Fault Slip Model of the 2018 Mw 6.6 Hokkaido Eastern Iburi, Japan, Earthquake Estimated from Satellite Radar and GPS Measurements
Abstract
:1. Introduction
2. Tectonic Background
3. Data Overview
3.1. GPS Observations
3.2. InSAR Observations
3.3. Agreement between GPS and InSAR Observations
3.4. Data Reduction and Weighting
4. Nonlinear Optimization and Source Modeling
4.1. Nonlinear Inversion
4.2. Linear Inversion
5. Discussion
5.1. Static Coulomb Stress Changes and Seismic Hazards
5.1.1. Static Coulomb Stress Changes and Aftershock Distributions
5.1.2. Static Coulomb Stress Changes on the Surrounding Faults
5.2. Seismogenic Structure and Tectonics Setting
5.2.1. Possible Complexity of the Seismogenic Fault
5.2.2. Seismotectonics and Seismogenesis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- USGS. Available online: https://earthquake.usgs.gov/earthquakes/eventpage/us2000h8ty/executive (accessed on 30 September 2018).
- Katsumata, K.; Ichiyanagi, M.; Ohzono, M.; Aoyama, H.; Tanaka, R.; Takada, M. The 2018 Hokkaido Eastern Iburi earthquake (MJMA = 6.7) was triggered by a strike-slip faulting in a stepover segment: Insights from the aftershock distribution and the focal mechanism solution of the main shock. Earth Planets Space 2019, 71, 53. [Google Scholar] [CrossRef]
- Yamagishi, H.; Yamazaki, F. Landslides by the 2018 Hokkaido Iburi-Tobu Earthquake on September 6. Landslides 2018, 15, 2521–2524. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Ma, S.; Xu, C.; Zhang, P.; Wen, B.; Tian, Y. Planet Image-Based Inventorying and Machine Learning-Based Susceptibility Mapping for the Landslides Triggered by the 2018 Mw 6.6 Tomakomai, Japan Earthquake. Remote Sens. 2019, 11, 978. [Google Scholar] [CrossRef]
- Kimura, G. The latest Cretaceous-early Paleogene rapid growth of accretionary complex and exhumation of high pressure series metamorphic rocks in northwestern Pacific margin. J. Geophys. Res. 1994, 99, 22147–22164. [Google Scholar] [CrossRef]
- Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 2003, 4. [Google Scholar] [CrossRef]
- GCMT. Available online: http://www.globalcmt.org/CMTsearch.html (accessed on 30 September 2018).
- JMA. Available online: http://www.jma.go.jp/jma/index.html (accessed on 30 September 2018).
- GSI. Available online: http://www.gsi.go.jp/cais/topic180912-index-e.html (accessed on 30 September 2018).
- Ohtani, M.; Imanishi, K. Seismic potential around the 2018 Hokkaido Eastern Iburi earthquake assessed considering the viscoelastic relaxation. Earth Planets Space 2019, 71, 57. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Xu, C.; Liu, Y.; Jiang, G.; He, P. Coseismic slip in the 2010 Yushu earthquake (China), constrained by wide-swath and strip-map InSAR. Nat. Hazards Earth Syst. Sci. 2013, 13, 35–44. [Google Scholar] [CrossRef]
- Xu, G.; Xu, C.; Wen, Y.; Jiang, G. Source parameters of the 2016–2017 Central Italy earthquake sequence from the Sentinel-1, ALOS-2 and GPS data. Remote Sens. 2017, 9, 1182. [Google Scholar] [CrossRef]
- Dhakal, Y.P.; Kunugi, T.; Kimura, T.; Suzuki, W.; Aoi, S. Peak ground motions and characteristics of nonlinear site response during the 2018 Mw 6.6 Hokkaido eastern Iburi earthquake. Earth Planets Space 2019, 71, 56. [Google Scholar] [CrossRef]
- Kobayashi, H.; Koketsu, K.; Miyake, H. Rupture process of the 2018 Hokkaido Eastern Iburi earthquake derived from strong motion and geodetic data. Earth Planets Space 2019, 71, 63. [Google Scholar] [CrossRef]
- Gripp, A.E.; Gordon, R.G. Young tracks of hotspots and current plate velocities. Geophys. J. Int. 2002, 150, 321–361. [Google Scholar] [CrossRef]
- Jolivet, L.; Miyashita, S. The Hidaka shear zone (Hokkaido, Japan): Genesis during a right-lateral strike-slip movement. Tectonics 1985, 4, 289–302. [Google Scholar] [CrossRef]
- Tsumura, N.; Ikawa, H.; Ikawa, T.; Shinoha, M. Delamination-wedge structure beneath the Hidaka collision zone, Central Hokkaido, Japan inferred from seismic reflection profiling. Geophys. Res. Lett. 1999, 26, 1057–1060. [Google Scholar] [CrossRef]
- Kita, S.; Okada, T.; Hasegawa, A.; Nakajima, J.; Matsuzawa, T. Existence of interplane earthquakes and neutral stress boundary between the upper and lower planes of the double seismic zone beneath Tohoku and Hokkaido, northeastern Japan. Tectonophysics 2010, 496, 68–82. [Google Scholar] [CrossRef]
- Kita, S.; Nakajima, J.; Hasegawa, A.; Okada, T.; Katsumata, K.; Asano, Y.; Kimura, T. Detailed seismic attenuation structure beneath Hokkaido, northeastern Japan: Arc-arc collision process, arc magmatism, and seismotectonics. J. Geophys. Res. Solid Earth 2014, 119, 6486–6511. [Google Scholar] [CrossRef]
- Ichihara, H.; Mogi, T.; Tanimoto, K.; Yamaya, Y.; Hashimoto, T. Crustal structure and fluid distribution beneath the southern part of the Hidaka collision zone revealed by 3-D electrical resistivity modeling. Geochem. Geophys. Geosyst. 2016, 17, 1480–1491. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, T.; Adachi, K.; Moriya, T.; Miyamachi, H. Upper and middle crustal deformation of an arc-arc collision across Hokkaido, Japan, inferred from seismic refraction/wide-angle reflection experiments. Tcetonophysics 2004, 388, 59–73. [Google Scholar] [CrossRef]
- Kato, N.; Sato, H.; Orito, M.; Hirakawa, K.; Ikeda, Y.; Ito, T. Has the plate boundary shifted from central Hokkaido to the eastern part of the Sea of Japan? Tectonophysics 2004, 388, 75–84. [Google Scholar] [CrossRef]
- Van Horne, A.; Sato, H.; Ishiyama, T. Evolution of the Sea of Japan back-arc and some unsolved issues. Tectonophysics 2017, 710, 6–20. [Google Scholar] [CrossRef]
- Ichikawa, M. Reanalysis of the mechanisms of earthquakes which occurred in and near Japan and statistical studies on the nodal plane solutions obtained, 1926–1968. Geophys. Mag. 1970, 35, 207–273. [Google Scholar]
- Moriya, T. Aftershock activity of the Hidaka mountains earthquake of 21 January 1970 (in Japanese with English figure captions). J. Seismol. Soc. Jpn. 1972, 24, 287–297. [Google Scholar]
- Moriya, T.; Miyamachi, H.; Katoh, S. Spatial distribution and mechanism solutions for foreshocks, mainshock and aftershocks of the Urakawa-Oki earthquake of 21 March 1982 (in Japanese with English figure captions). Geophys. Bull. Hokkaido Univ. 1983, 42, 191–213. [Google Scholar]
- Omuralieva, A.M.; Hasegawa, A.; Matsuzawa, T.; Nakajima, J.; Okada, T. Tectonophysics Lateral variation of the cutoff depth of shallow earthquakes beneath the Japan Islands and its implications for seismogenesis. Tectonophysics 2012, 518, 93–105. [Google Scholar] [CrossRef]
- Savidge, E.; Nissen, E.; Nemati, M.; Karas, E.; Hollingsworth, J.; Talebian, M.; Bergman, E.; Ghods, A.; Ghorashi, M.; Kosari, E.; et al. The December 2017 Hojedk (Iran) earthquake triplet-sequential rupture of shallow reverse faults in a strike-slip restraining bend. Geophys. J. Int. 2019, 217, 909–925. [Google Scholar] [CrossRef]
- Herring, T.A.; King, R.W.; McClusky, S.C. Introduction to GAMIT/GLOBK, Release 10.6; Massachusetts Institute of Technology: Cambridge, MA, USA, 2015. [Google Scholar]
- Boehm, J.; Werl, B.; Schuh, H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. GAMMA SAR and interferometric processing software. In Proceedings of the ERS ENVISAT Symposium, Gothenburg, Sweden, 16–20 October 2000. [Google Scholar]
- Wen, Y.; Xu, C.; Liu, Y.; Jiang, G. Deformation and Source Parameters of the 2015 Mw 6.5 Earthquake in Pishan, Western China, from Sentinel-1A and ALOS-2 Data. Remote Sens. 2016, 8, 134. [Google Scholar] [CrossRef]
- Kobayashi, T.; Hayashi, K.; Yarai, H. Geodetically estimated location and geometry of the fault plane involved in the 2018 Hokkaido Eastern Iburi earthquake. Earth Planets Space 2019, 71, 62. [Google Scholar] [CrossRef]
- Lohman, R.B.; Simons, M. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling. Geochem. Geophys. Geosyst. 2005, 6. [Google Scholar] [CrossRef]
- Xu, C.; Ding, K.; Cai, J.; Grafarend, E.W. Methods of determining weight scaling factors for geodetic-geophysical joint inversion. J. Geodyn. 2009, 47, 39–46. [Google Scholar] [CrossRef]
- Feng, W.; Li, Z.; Elliott, J.R.; Fukushima, Y.; Hoey, T.; Singleton, A.; Cook, R.; Xu, Z. The 2011 MW 6.8 Burma earthquake: Fault constraints provided by multiple SAR techniques. Geophys. J. Int. 2013, 195, 650–660. [Google Scholar] [CrossRef]
- Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1992, 82, 1018–1040. [Google Scholar]
- Steck, L.K.; Phillips, W.S.; Mackey, K.; Begnaud, M.L.; Stead, R.J.; Rowe, C.A. Seismic tomography of crustal P and S across Eurasia. Geophys. J. Int. 2009, 177, 81–92. [Google Scholar] [CrossRef]
- Parsons, B.; Wright, T.; Rowe, P.; Andrews, J.; Jackson, J.; Walker, R.; Khatib, M.; Talebian, M.; Bergman, E.; Engdahl, E. The 1994 Sefidabeh (eastern Iran) earthquakes revisited: New evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault. Geophys. J. Int. 2006, 164, 202–217. [Google Scholar] [CrossRef]
- Wells, D.; Coppersmith, K.J. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Hestenes, M.R.; Stiefel, E. Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 1952, 49, 477–496. [Google Scholar] [CrossRef]
- Bos, A.G.; Spakman, W. The resolving power of coseismic surface displacement data for fault slip distribution at depth. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Peyret, M.; Chéry, J.; Djamour, Y.; Avallone, A.; Sarti, F.; Briole, P.; Sarpoulaki, M. The source motion of 2003 Bam (Iran) earthquake constrained by satellite and ground-based geodetic data. Geophys. J. Int. 2007, 169, 849–865. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Xu, C.; Wen, Y. Sentinel-1 observation of the 2017 Sangsefid earthquake, northeastern Iran: Rupture of a blind reserve-slip fault near the Eastern Kopeh Dagh. Tectonophysics 2018, 731, 131–138. [Google Scholar] [CrossRef]
- Jiang, Z.; Huang, D.; Yuan, L.; Hassan, A.; Zhang, L.; Yang, Z. Coseismic and postseismic deformation associated with the 2016 Mw 7.8 Kaikoura earthquake, New Zealand: Fault movement investigation and seismic hazard analysis. Earth Planets Space 2018, 70, 62. [Google Scholar] [CrossRef]
- Lin, J.; Stein, R.S. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Toda, S.; Stein, R.S.; Sevilgen, V.; Lin, J. Coulomb 3.3 Graphic-Rich Deformation and Stress-Change Software for Earthquake, Tectonic, and Volcano Research and Teaching—User Guide; Open File Report 2011–1060; U.S. Geological Survey: Reston, VA, USA, 2011; Volume 63. Available online: http://pubs.usgs.gov/of/2011/1060/ (accessed on 20 October 2018).
- Huang, M.H.; Fielding, E.J.; Liang, C.; Milillo, P.; Bekaert, D.; Dreger, D.; Salzer, J. Coseismic deformation and triggered landslides of the 2016 Mw 6.2 Amatrice earthquake in Italy. Geophys. Res. Lett. 2017, 44, 1266–1274. [Google Scholar] [CrossRef]
- Hong, S.; Zhou, X.; Zhang, K.; Meng, G. Source Model and Stress Disturbance of the 2017 Jiuzhaigou Mw 6.5 Earthquake Constrained by InSAR and GPS Measurements. Remote Sens. 2018, 10, 1400. [Google Scholar] [CrossRef]
- Parsons, T. A hypothesis for delayed dynamic earthquake triggering. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Felzer, K.R.; Brodsky, E.E. Testing the stress shadow hypothesis. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Das, S.; Scholz, C.H. Off-fault aftershock clusters caused by shear stress increase? Bull. Seismol. Soc. Am. 1981, 71, 1669–1675. [Google Scholar]
- Meade, B.J.; Devries, P.M.R.; Faller, J.; Viegas, F.; Wattenberg, M. What is better than Coulomb Failure Stress? A ranking of scalar static stress triggering mechanisms from 105 mainshock-aftershock pairs. Geophys. Res. Lett. 2017, 44, 11409–11416. [Google Scholar] [CrossRef]
- Devries, P.M.R.; Viégas, F.; Wattenberg, M.; Meade, B.J. Deep learning of aftershock patterns following large earthquakes. Nature 2018, 560, 632–634. [Google Scholar] [CrossRef]
- Kita, S.; Hasegawa, A.; Nakajima, J.; Okada, T.; Matsuzawa, T. High-resolution seismic velocity structure beneath the Hokkaido corner, northern Japan: Arc-arc collision and origins of the 1970 M 6.7 Hidaka and 1982 M 7.1 Urakawa-Oki earthquakes. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Katsumata, K.; Wada, N.; Kasahara, M. Newly imaged shape of the deep seismic zone within the subducting Pacific plate beneath the Hokkaido corner, Japan-Kurile arc-arc junction. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
Source | Latitude (°N) | Longitude (°E) | Focal Mechanisms | Fault Parameters | Depth | Magnitude (Mw) | |||
---|---|---|---|---|---|---|---|---|---|
Strike (°) | Dip (°) | Rake (°) | Length (km) | Width (km) | (km) | ||||
USGS | 42.686 | 141.929 | 333/167 | 61/30 | 83/102 | - | - | - | 6.6 |
GCMT | 42.770 | 142.090 | 346/139 | 70/23 | 100/65 | - | - | - | 6.7 |
JMA | 42.690 | 142.007 | 286/169 | 48/64 | 37/132 | - | - | - | 6.7 |
GSI † | 42.586 (±0.017°) | 141.976 (±0.021°) | 358 (±3.5) | 74 (±4.4) | 113 (±7.2) | 14.0 (±3.9) | 15.9 (±3.5) | 16.2 (±1.7) | 6.56 |
Uni. slip | 42.627 (±0.016°) | 141.971 (±0.011°) | 347.2 (±7.4) | 79.6 (±3.8) | 85.1 (±10.3) | 15.8 (±5.2) | 14.0 (fixed) | 18.2 (±1.1) | 6.44 |
Dist. slip | 42.627 | 141.971 | 347.2 | 76 | - | 56 | 40 | - | 6.50 |
No. | Satellite | Track | Master | Slave | Inc. | Azi. | † | ‡ | |
---|---|---|---|---|---|---|---|---|---|
YY/MM/DD | YY/MM/DD | m | (°) | (°) | (mm) | (km) | |||
1 | Sentinel-1A | T046D | 2018/08/24 | 2018/09/05 | 45.8 | 36.4 | −169.6 | 14.3 | 3.4 |
2 | ALOS-2 | P018D | 2018/08/23 | 2018/09/06 | 69.3 | 36.2 | −169.7 | 14.5 | 2.3 |
3 | ALOS-2 | P112A | 2018/08/25 | 2018/09/08 | −70.6 | 31.1 | −10.9 | 10.0 | 2.1 |
4 * | Sentinel-1B | T068A | 2018/09/01 | 2018/09/13 | 22.3 | 41.2 | −10.3 | 9.8 | 3.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Wen, Y.; Xu, G.; Wang, S.; Wang, X.; Liu, Y.; Xu, C. Fault Slip Model of the 2018 Mw 6.6 Hokkaido Eastern Iburi, Japan, Earthquake Estimated from Satellite Radar and GPS Measurements. Remote Sens. 2019, 11, 1667. https://doi.org/10.3390/rs11141667
Guo Z, Wen Y, Xu G, Wang S, Wang X, Liu Y, Xu C. Fault Slip Model of the 2018 Mw 6.6 Hokkaido Eastern Iburi, Japan, Earthquake Estimated from Satellite Radar and GPS Measurements. Remote Sensing. 2019; 11(14):1667. https://doi.org/10.3390/rs11141667
Chicago/Turabian StyleGuo, Zelong, Yangmao Wen, Guangyu Xu, Shuai Wang, Xiaohang Wang, Yang Liu, and Caijun Xu. 2019. "Fault Slip Model of the 2018 Mw 6.6 Hokkaido Eastern Iburi, Japan, Earthquake Estimated from Satellite Radar and GPS Measurements" Remote Sensing 11, no. 14: 1667. https://doi.org/10.3390/rs11141667
APA StyleGuo, Z., Wen, Y., Xu, G., Wang, S., Wang, X., Liu, Y., & Xu, C. (2019). Fault Slip Model of the 2018 Mw 6.6 Hokkaido Eastern Iburi, Japan, Earthquake Estimated from Satellite Radar and GPS Measurements. Remote Sensing, 11(14), 1667. https://doi.org/10.3390/rs11141667