Ground Deformation Revealed by Sentinel-1 MSBAS-InSAR Time-Series over Karamay Oilfield, China
Abstract
:1. Introduction
2. Study Area
3. Methods and Data
3.1. Stacking Method
3.2. Multidimensional Small Baseline Subset Method
3.3. Data and Processing
4. Results
4.1. Deformation Velocity
4.2. Two-Dimensional Time Series Deformation
5. Analysis and Discussion
5.1. Deformation Analysis
5.2. Inversion Modeling
5.2.1. Mogi Modeling
5.2.2. Sill Modeling
5.3. Deformation and Seismicity
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, X.; Li, W.; Gao, B.; Yang, D. Study on subsurface water injection in Qizhong area of Karamay oilfield. Xinjiang Oil Gas. 2012, 3, 57–59. [Google Scholar]
- Pan, S. Discussion on oil exploitation technology and oil field water Injection. Chem. Intermed. 2018, 7, 70–71. [Google Scholar]
- Khakim, M.Y.N.; Tsuji, T.; Matsuoka, T. Geomechanical modeling for InSAR-derived surface deformation at steam-injection oil sand fields. J. Pet. Sci. Eng. 2012, 96, 152–161. [Google Scholar] [CrossRef]
- Guéguen, Y.; Deffontaines, B.; Fruneau, B.; Al Heib, M.; de Michele, M.; Raucoules, D.; Planchenault, J.; Guise, Y. Monitoring residual mining subsidence of Nord/Pas-de-Calais coal basin from differential and Persistent Scatterer Interferometry (Northern France). J. Appl. Geophys. 2009, 69, 24–34. [Google Scholar] [CrossRef]
- Martínez-Garzón, P.; Kwiatek, G.; Bohnhoff, M.; Dresen, G. Volumetric components in the earthquake source related to fluid injection and stress state. Geophys. Res. Lett. 2017, 44, 800–809. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Zhang, Y.; Wang, Q.; Xin, Y.; Li, J. Detecting land uplift associated with enhanced oil recovery using InSAR in the Karamay oil field, Xinjiang, China. Int. J. Remote Sens. 2016, 37, 1527–1540. [Google Scholar] [CrossRef]
- Lu, Z.; Dzurisin, D. InSAR imaging of Aleutian volcanoes. In InSAR Imaging of Aleutian Volcanoes; Springer: Berlin/Heidelberg, Germany, 2014; pp. 87–345. [Google Scholar]
- Massonnet, D.; Briole, P.; Arnaud, A. Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 1995, 6532, 567–570. [Google Scholar] [CrossRef]
- Lu, Z.; Mann, D.; Freymueller, J.T.; Meyer, D.J. Synthetic aperture radar interferometry of Okmok volcano, Alaska: Radar observations. J. Geophys. Res. Solid Earth 2000, B5, 10791–10806. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the landers earthquake mapped by radar interferometry. Nature 1933, 64, 138–142. [Google Scholar] [CrossRef]
- Zebker, H.A.; Rosen, P.A.; Goldstein, R.M.; Gabriel, A.; Werner, C.L. On the derivation of coseismic displacement fields using differential radar interferometry: The landers earthquake. J. Geophys. Res. Solid Earth 1994, 99, 19617–19634. [Google Scholar] [CrossRef]
- Tantianuparp, P.; Shi, X.; Zhang, L.; Balz, T.; Liao, M. Characterization of landslide deformations in three Gorges area using Multiple InSAR Data Stacks. Remote Sens. 2013, 5, 2704–2719. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, Z.; Zhang, Q.; Fuente, J.D.L. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sens. Environ. 2012, 124, 348–359. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Engelhardt, H.; Kamb, B.; Frolich, R.M. Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream. Science 1993, 262, 1525–1530. [Google Scholar] [CrossRef] [PubMed]
- Michel, R.; Rignot, E. Flow of Glaciar Moreno, Argentina, from repeat-pass Shuttle Imaging Radar images: Comparison of the phase correlation method with radar interferometry. J. Glaciol. 1999, 45, 93–100. [Google Scholar] [CrossRef]
- Lubis, A.M.; Sato, T.; Tomiyama, N.; Isezaki, N.; Yamanokuchi, T. Ground subsidence in Semarang-Indonesia investigated by ALOS–PALSAR satellite SAR interferometry. J. Asian Earth Sci. 2011, 40, 1079–1088. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Q.; Ding, X.; Peng, J. Research on the characteristics of land subsidence and ground fissure development in Xi’an based on InSAR. J. Eng. Geol. 2009, 5, 1214–1222. [Google Scholar]
- Milillo, P.; Giardina, G.; DeJong, M.J.; Perissin, D.; Milillo, G. Multi-Temporal InSAR structural damage assessment: The London crossrail case study. Remote Sens. 2018, 10, 287. [Google Scholar] [CrossRef]
- Giardina, G.; Milillo, P.; DeJong, M.; Perissin, D.; Milillo, G. Evaluation of InSAR monitoring data for post-tunnelling settlement damage assessment. Struct. Control Health Monit. 2019, 26, e2285. [Google Scholar] [CrossRef]
- Roccheggiani, M.; Piacentini, D.; Tirincanti, E.; Perissin, D.; Menichetti, M. Detection and monitoring of tunneling induced ground movements using Sentinel-1 SAR interferometry. Remote Sens. 2019, 11, 639. [Google Scholar] [CrossRef]
- Juncu, D.; Árnadóttir, T.; Geirsson, H.; Guðmundsson, G.B.; Lund, B.; Gunnarsson, G.; Michalczewska, K. Injection-induced surface deformation and seismicity at the Hellisheidi geothermal field, Iceland. J. Volcanol. Geotherm. Res. 2018. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, W.; Dixon, T.H.; Amelung, F.; Han, W.S.; Li, P. InSAR monitoring of ground deformation due to CO2 injection at an enhanced oil recovery site, West Texas. Int. J. Greenh. Gas Control 2015, 41, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Loesch, E.; Sagan, V. SBAS analysis of induced ground surface deformation from wastewater injection in east central Oklahoma, USA. Remote Sens. 2018, 10, 283–299. [Google Scholar] [CrossRef]
- Zhu, Z.; Du, M.; Han, H. New technology for shallow super heavy oil exploitation in Karamay oilfield. J. Oil Gas Technol. 2007, 3, 441–443. [Google Scholar]
- Pang, P. Karamay oilfield—the first large oilfield in New China. J. Univ. Pet. China 2001, 4, 29–32. [Google Scholar]
- Aimaiti, Y.; Yamazaki, F.; Liu, W.; Kasimu, A. Monitoring of land-surface deformation in the Karamay oilfield, Xinjiang, China, Using SAR Interferometry. Appl. Sci. 2017, 7, 772–787. [Google Scholar] [CrossRef]
- Teatini, P.; Gambolati, G.; Ferronato, M.; Settari, A.; Walters, D. Land uplift due to subsurface fluid injection. J. Geodyn. 2011, 51, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Samsonov, S.; d’Oreye, N. Multidimensional time-series analysis of ground deformation from multiple InSAR data sets applied to Virunga volcanic province. Geophys. J. Int. 2012, 191, 1095–1108. [Google Scholar]
- Samsonov, S.V.; Feng, W.; Peltier, A. Multidimensional Small Baseline Subset (MSBAS) for volcano monitoring in two dimensions: Opportunities and challenges. Case study Piton de la Fournaise volcano. J. Volcanol. Geotherm. Res. 2017, 344, 121–138. [Google Scholar] [CrossRef]
- Samsonov, S.V.; D’oreye, N. Multidimensional Small Baseline Subset (MSBAS) for two-dimensional deformation analysis: Case study Mexico City. Can. J. Remote Sens. 2017, 18, 318–329. [Google Scholar] [CrossRef]
- Song, Z.Q.; Tan, C.Q.; Liu, S.S.; Wu, S.B.; Gao, X.J.; Qin, J.H.; Luo, Z.X. Study on reserve distribution and recovery percent of Heterogenerous conglomerate oil pools—an example front Upper Karamay formation reservoir in Karamay oilfield. Xinjiang Pet. Geol. 2001, 22, 335–337. [Google Scholar]
- Zi-qi, S.; Hong, W.; Jun-feng, Y.; Wei, H.; Ting, P.; Kun-Peng, C. The research of reservoir tectonic feature of Karamay group in Qizhong and Qidong area in Karamay oilfield. West China Pet. Geosci. 2006, 4, 46–49. [Google Scholar]
- Wang, Y. Glutenite Reservoir Heterogeneity Study of Upper Karamay Formation in Wu2dong Area of Karamay Oilfield; China University of Petroleum: Beijing, China, 2016. [Google Scholar]
- Yin, S.; Chen, G.; Chen, Y.; Wu, X. Control effect of pore structure modality on remaining oil in glutenite reservoir: A case from lower Karamay Formation in block Qidong 1 of Karamay oilfield. Lithhologic Reserv. 2018, 30, 91–102. [Google Scholar]
- Sandwell, D.T.; Price, E.J. Phase gradient approach to stacking interferograms. J. Geophys. Res. Solid Earth 1998, 103, 30183–30204. [Google Scholar] [CrossRef] [Green Version]
- Sandwell, D.T.; Sichoix, L. Topographic phase recovery from stacked ERS interferometry and a low-resolution digital elevation model. J. Geophys. Res. Solid Earth 2000, 105, 28211–28222. [Google Scholar] [CrossRef]
- Ali, S.T.; Feigl, K.L. A new strategy for estimating geophysical parameters from InSAR data: Application to the Krafla central volcano in Iceland. Geochem. Geophys. Geosystems 2012, 13. [Google Scholar] [CrossRef] [Green Version]
- Liu, C. Research on Time Series InSAR Technology for Structural Deformation Monitoring; Chang’an University: Xi’an, China, 2017. [Google Scholar]
- Wright, T.J. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31, 169–178. [Google Scholar] [CrossRef]
- Jin-Woo, K.; Zhong, L.; Kimberly, D. Ongoing deformation of sinkholes in Wink, Texas, observed by time-series Sentinel-1A SAR interferometry. Remote Sens. 2016, 4, 313–324. [Google Scholar]
- Samsonov, S.; Czarnogorska, M.; White, D. Satellite interferometry for high-precision detection of ground deformation at a carbon dioxide storage site. Int. J. Greenh. Gas Control 2015, 42, 188–199. [Google Scholar] [CrossRef]
- Hansen, P.C.; O’Leary, D.P. The use of the L-Curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 1993, 6, 1487–1505. [Google Scholar] [CrossRef]
- Ouyang, L.; Li, X.; Hui, F.; Zhang, B.; Cheng, X. Sentinel-1A data products’ characters and the potential applications. Chin. J. Polar Res. 2017, 29, 286–295. [Google Scholar]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Gamma SAR and interferometric processing software. In Proceedings of the Ers-Envisat Symposium, Gothenburg, Sweden, 16–20 October 2000; pp. 1620–1629. [Google Scholar]
- Zhang, Y.; Wang, P.; Luo, X.; Zhang, Q.; Chen, H. Monitoring Xi’an land subsidence using Sentinel-1 images and SBAS-InSAR technology. Bull. Surv. Mapp. 2017, 29, 100–104. [Google Scholar]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 3, 813–821. [Google Scholar] [CrossRef]
- Dong, S.; Samsonov, S.; Yin, H.; Hang, L. Two-dimensional ground deformation monitoring in Shanghai based on SBAS and MSBAS InSAR methods. J. Earth Sci. 2018, 29, 960–968. [Google Scholar] [CrossRef]
- Grzovic, M.; Ghulam, A. Evaluation of land subsidence from underground coal mining using time SAR (SBAS and PSI) in Springfield, Illinois, USA. Nat. Hazards 2015, 79, 1739–1751. [Google Scholar] [CrossRef]
- Liu, G.; Tang, Y.; Wu, F.; Qin, X.; Zeng, A. Coordinates and velocities of crustal movement observation network in China. J. Geod. Geodyn. 2012, 32, 53–56. [Google Scholar]
- Yi, C. Study on Distribution Regularities about the Remaining Oil of the Upper Karamay Reservoir in Wu2Dong Area of Karamay Oil Field; China University of Petroleum: Beijing, China, 2016. [Google Scholar]
- Liu, Y. Correlation Analysis between InSAR Technology Monitoring and Subsurface Fluid Mining in the Yellow River Delta; Chang’an University: Xi’an, China, 2016. [Google Scholar]
- Mogi, K. Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. In Bulletin of the Earthquake Research Institute; University of Tokyo: Tokyo, Japan, 1958; Volume 36, pp. 99–134. [Google Scholar]
- Okada, Y. Surface deformation due to shear and tensile faults in a half space. Bull. Seismol. Soc. Am. 1992, 82, 1018–1040. [Google Scholar]
- Zheng, Z.; Wang, W.; Chen, H.; Zhang, F. Alluvial Fan Conglomerate Reservoir Sedimentary Characteristics of Lower Karemary Formation in the 6th District of Karemary Oilfield. Sci. Technol. Rev. 2009, 27, 52–56. [Google Scholar]
- Suckale, J. Moderate-to-large seismicity induced by hydrocarbon production. Lead. Edge 2010, 29, 310–319. [Google Scholar] [CrossRef]
Parameter | Optimization (B1) | Optimization (C1) |
---|---|---|
X (km) | 1.61 ± 0.02 | 0.57 ± 0.01 |
Y (km) | 1.60 ± 0.03 | 0.67 ± 0.02 |
Depth (m) | 580 ± 30 | 370 ± 20 |
Volume change (, m3) | 1.97 ± 1.1 | 3.87 ± 5.9 |
Parameter | Optimization (B1) | Optimization (C1) |
---|---|---|
X (km) | 1.68 ± 0.02 | 0.61 ± 0.01 |
Y (km) | 1.63 ± 0.02 | 0.67 ± 0.01 |
Depth (m) | 606 ± 30 | 422 ± 30 |
Strike (°) | 270° ± 3° | 189° ± 2° |
Length (km) | 1.00 ± 0.07 | 0.29 ± 0.03 |
Width (km) | 0.23 ± 0.03 | 0.26 ± 0.01 |
Opening (m) | 1.26 ± 0.2 | 0.39 ± 0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Zhang, D.; Zhao, C.; Han, B.; Sun, R.; Du, J.; Chen, L. Ground Deformation Revealed by Sentinel-1 MSBAS-InSAR Time-Series over Karamay Oilfield, China. Remote Sens. 2019, 11, 2027. https://doi.org/10.3390/rs11172027
Yang C, Zhang D, Zhao C, Han B, Sun R, Du J, Chen L. Ground Deformation Revealed by Sentinel-1 MSBAS-InSAR Time-Series over Karamay Oilfield, China. Remote Sensing. 2019; 11(17):2027. https://doi.org/10.3390/rs11172027
Chicago/Turabian StyleYang, Chengsheng, Dongxiao Zhang, Chaoying Zhao, Bingquan Han, Ruiqi Sun, Jiantao Du, and Liquan Chen. 2019. "Ground Deformation Revealed by Sentinel-1 MSBAS-InSAR Time-Series over Karamay Oilfield, China" Remote Sensing 11, no. 17: 2027. https://doi.org/10.3390/rs11172027
APA StyleYang, C., Zhang, D., Zhao, C., Han, B., Sun, R., Du, J., & Chen, L. (2019). Ground Deformation Revealed by Sentinel-1 MSBAS-InSAR Time-Series over Karamay Oilfield, China. Remote Sensing, 11(17), 2027. https://doi.org/10.3390/rs11172027