Multi-Temporal Monsoon Crop Biomass Estimation Using Hyperspectral Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Spectral Data Measurements
2.3. Biomass Sampling
2.4. Sampling Dates
2.5. Statistical Analysis
3. Results
3.1. Crop Specific FMB Models
3.2. Performance of the Generalised Models Considering N Application Rates, Sampling Dates and Water Supply
3.3. Importance of Wavelengths
4. Discussion
5. Potential and Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Crops | Years Grown | Varieties | Sowing | Duration (days) | Yield (t/ha) | Salient Features | |
---|---|---|---|---|---|---|---|
Rainfed | Irrigated | ||||||
Lablab | 2016 and 2017 | HA 4 (HA 3 xMagadi local) | Can be grown throughout the year as they are photo insensitive | 100–105 | Dry Seeds: 1–1.2, Green pods: 4.5–5 | Pods are constricted with characteristic odour (Sogadu) in all the three cropping seasons | |
2018 | HA 3 (HA 1 × US 67-31) | 95–100 | Dry Seeds: 0.8–0.9 Green pods: 4.5–5 | Flat pods with no odour (Sogadu) | |||
Maize | 2016 and 2017 | Nithyashree (SKV-50 × NA1-105) | Can be grown throughout the year | 110–120 | Grain: 7.41–7.90 Straw: 19.77 | Grain: 7.90–8.40 Straw: 29.65 | Tolerant to downy mildew, leaf blight and stem borer |
2018 | NAH 1137 (Hema) | 110–120 | Grain: 7.90–8.40 Straw: 19.77 | Grain: 8.89–9.39 Straw: 29.65 | |||
Finger millet | 2016 | GPU-28 (Indaf 5 × (Indaf 9 × IE 1012)) | July–August | 110–115 | Average Grain: 3.5–4 | Medium tall plants, semi compact ears with tip incurved fingers. Highly resistant to finger and neck blast | |
2017 | MR-6 (African white × RoH 2) | June–July | 120–125 | Average Grain: 3–3.5 | 100–110 cm tall plants, open ears with tip incurved fingers | ||
2018 | ML-365 (IE 1012 × Indaf 5) | June–August (Kharif monsoon) January–February (Rabi dry) | 110–115 | Average Grain: 5–5.5 | Medium height, semi compact ears with tip incurved fingers. Resistant to neck blast and tolerant to drought |
Mineral Fertilisation | Lablab | Maize | Finger Millet | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2016 | 2017 | 2018 | 2016 | 2017 | 2018 | ||||||||||
R | I | R | I | R | I | R | I | R | I | R | I | R | I | R | I | R | I | |
N (kg ha−1) § | 25 | 25 | 25 | 25 | 25 | 25 | 100 | 150 | 100 | 150 | 150 | 150 | 50 | 100 | 50 | 100 | 50 | 50 |
P2O5 (kg ha−1) | 10 | 10 | 50 | 50 | 10 | 10 | 50 | 75 | 50 | 75 | 50 | 75 | 40 | 50 | 40 | 50 | 40 | 50 |
K2O (kg ha−1) | 10 | 10 | 25 | 25 | 10 | 10 | 37.5 | 50 | 25 | 40 | 37.5 | 50 | 37.5 | 50 | 37.5 | 50 | 37.5 | 50 |
Rainfed Experiment | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sampling Dates | Lablab (BBCH/DAS*) | Maize (BBCH/DAS*) | Finger Millet (BBCH/DAS*) | ||||||
2016 | 2017 | 2018 | 2016 | 2017 | 2018 | 2016 | 2017 | 2018 | |
1 | 2/40 | 2/23 | 3/42 | 1/25 | 2/44 | 2/30 | |||
2 | 5/53 | 2/38 | 5/61 | 3/45 | 3/65 | 3/52 | |||
3 | 6/63 | 5/47 | 7/81 | 6/67 | 7/79 | 5/94 | 5/81 | 5/79 | |
4 | 7/73 | 6/69 | 7/78 | 8/98 | 7/108 | 7/109 | |||
5 | 8/89 | 8/89 | 8/126 | ||||||
Irrigated experiment | |||||||||
1 | 2/41 | 2/24 | 3/43 | 1/27 | 2/45 | 2/32 | |||
2 | 6/56 | 5/39 | 5/62 | 3/46 | 3/66 | 3/53 | |||
3 | 7/64 | 6/48 | 7/88 | 6/68 | 7/87 | 5/96 | 5/82 | 5/87 | |
4 | 7/74 | 7/72 | 7/100 | 7/110 | 7/110 | ||||
5 | 8/97 | 8/90 | 8/83 | 8/128 | 8/135 |
References
- Arjun, K.M. Indian Agriculture-Status, Importance and Role in Indian Economy. Int. J. Agric. Food Sci. Technol. 2013, 4, 343–346. [Google Scholar]
- Ferrant, S.; Selles, A.; Le Page, M.; Herrault, P.A.; Pelletier, C.; Al-Bitar, A.; Mermoz, S.; Gascoin, S.; Bouvet, A.; Saqalli, M.; et al. Detection of irrigated crops from Sentinel-1 and Sentinel-2 data to estimate seasonal groundwater use in South India. Remote Sens. 2017, 9, 1119. [Google Scholar] [CrossRef]
- Thenkabail, P.; Dheeravath, V.; Biradar, C.; Gangalakunta, O.R.P.; Noojipady, P.; Gurappa, C.; Velpuri, M.; Gumma, M.; Li, Y. Irrigated area maps and statistics of India using remote sensing and national statistics. Remote Sens. 2009, 1, 50–67. [Google Scholar] [CrossRef]
- Cohen, Y.; Alchanatis, V.; Zusman, Y.; Dar, Z.; Bonfil, D.J.; Karnieli, A.; Zilberman, A.; Moulin, A.; Ostrovsky, V.; Levi, A.; et al. Leaf nitrogen estimation in potato based on spectral data and on simulated bands of the VENμS satellite. Precis. Agric. 2010, 11, 520–537. [Google Scholar] [CrossRef]
- Samborski, S.M.; Tremblay, N.; Fallon, E. Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron. J. 2009, 101, 800–816. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, G. Estimation of vegetation water content using hyperspectral vegetation indices: A comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecol. 2019, 19, 18. [Google Scholar] [CrossRef] [PubMed]
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. NASA Spec. Publ. 1974, 1, 309–317. [Google Scholar]
- Warren, G.; Metternicht, G. Agricultural applications of high-resolution digital multispectral imagery: Evaluating within-field spatial variability of Canola (Brassica napus) in Western Australia. Photogramm. Eng. Remote Sens. 2005, 71, 595–602. [Google Scholar] [CrossRef]
- Wang, C.; Nie, S.; Xi, X.; Luo, S.; Sun, X. Estimating the biomass of maize with hyperspectral and LiDAR data. Remote Sens. 2017, 9, 11. [Google Scholar] [CrossRef]
- Moeckel, T.; Dayananda, S.; Nidamanuri, R.; Nautiyal, S.; Hanumaiah, N.; Buerkert, A.; Wachendorf, M. Estimation of vegetable crop parameter by multi-temporal UAV-borne images. Remote Sens. 2018, 10, 805. [Google Scholar] [CrossRef]
- Burkart, A.; Aasen, H.; Alonso, L.; Menz, G.; Bareth, G.; Rascher, U. Angular dependency of hyperspectral measurements over wheat characterized by a novel UAV based goniometer. Remote Sens. 2015, 7, 725–746. [Google Scholar] [CrossRef]
- Yu, K.; Li, F.; Gnyp, M.L.; Miao, Y.; Bareth, G.; Chen, X. Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain. ISPRS J. Photogramm. Remote Sens. 2013, 78, 102–115. [Google Scholar] [CrossRef]
- Vigneau, N.; Ecarnot, M.; Rabatel, G.; Roumet, P. Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in wheat. F. Crop. Res. 2011, 122, 25–31. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Jin, X.; Yuan, H.; Li, Z.; Zhou, C.; Yang, G.; Tian, Q. A comparison of crop parameters estimation using images from UAV-mounted snapshot hyperspectral sensor and high-definition digital camera. Remote Sens. 2018, 10, 1138. [Google Scholar] [CrossRef]
- Krishna, G.; Sahoo, R.N.; Singh, P.; Bajpai, V.; Patra, H.; Kumar, S.; Dandapani, R.; Gupta, V.K.; Viswanathan, C.; Ahmad, T.; et al. Comparison of various modelling approaches for water deficit stress monitoring in rice crop through hyperspectral remote sensing. Agric. Water Manag. 2019, 213, 231–244. [Google Scholar] [CrossRef]
- Koppe, W.; Gnyp, M.L.; Hennig, S.D.; Li, F.; Miao, Y.; Chen, X.; Jia, L.; Bareth, G. Multi-temporal hyperspectral and radar remote sensing for estimating winter wheat biomass in the North China Plain. Photogramm. Fernerkundung Geoinf. 2012, 3, 281–298. [Google Scholar] [CrossRef]
- Knight, J.F.; Lunetta, R.S.; Ediriwickrema, J.; Khorram, S. Regional scale land cover characterization using MODIS-NDVI 250 m multi-temporal imagery: A phenology-based approach. GIScience Remote Sens. 2006, 43, 1–23. [Google Scholar] [CrossRef]
- Aasen, H.; Gnyp, M.L.; Miao, Y.; Bareth, G. Automated Hyperspectral Vegetation Index Retrieval from Multiple Correlation Matrices with HyperCor. Photogramm. Eng. Remote Sens. 2014, 80, 785–795. [Google Scholar] [CrossRef]
- Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sens. 2013, 5, 5006–5039. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens. 2017, 9, 708. [Google Scholar] [CrossRef]
- Byre Gowda, M. DOLICHOS BEAN—Lablab Purpureus (L.) Sweet. Available online: http://www.lablablab.org/html/general-information.html (accessed on 15 May 2019).
- Selected State-Wise Area, Production and Productivity of Ragi in India (2016-17). Available online: https://www.indiastat.com/table/agriculture-data/2/ragi-finger-millet/17200/1131134/data.aspx (accessed on 16 May 2019).
- Prasad, J.V.N.S.; Rao, C.S.; Srinivas, K.; Jyothi, C.N.; Venkateswarlu, B.; Ramachandrappa, B.K.; Dhanapal, G.N.; Ravichandra, K.; Mishra, P.K. Effect of ten years of reduced tillage and recycling of organic matter on crop yields, soil organic carbon and its fractions in alfisols of semi arid tropics of Southern India. Soil Tillage Res. 2016, 156, 131–139. [Google Scholar] [CrossRef]
- University of Agricultural Sciences Bangalore Agrometeorology. Available online: https://www.uasbangalore.edu.in/index.php/research/agromoterology (accessed on 21 July 2019).
- Byre Gowda, M. HA-4, a new variety of Lablab purpureus introduced for cultivation in Karnataka. In Proceedings of the Annual Plant Breeder’s Conference, Bangalore, India, 23–25 October 2007. [Google Scholar]
- Byre Gowda, M. Genetic Enhancement of Dolichos Bean through Integration of Conventional Breeding & Molecular Approaches and Farmers Participatory Plant Breeding. 2011. Available online: https://www.kirkhousetrust.org/docs/reports/dolichos_report_april_2011.pdf (accessed on 22 June 2019).
- Hybrid mai.ze vari.etal desc.Ription. Available online: http://e-krishiuasb.karnataka.gov.in/ItemDetails.aspx?depID=1&subDepID=1&cropID=4# (accessed on 14 June 2019).
- Kaul, J.; Dass, S.; Manivannan, A.; Singode, A.; Sekhar, J.C.; Chikkappa, G.K.; Parkash, O. Maize hybrid and composite varieties released in India. Tech. Bull. 2010, 80. [Google Scholar]
- Project Coordinating Unit Compendium of Released Varieties in Small Millets. 2014. Available online: https://www.dhan.org/smallmillets/docs/report/Compendium_of_Released_Varieties_in_Small_millets.pdf (accessed on 22 June 2019).
- Hyperspectral Imaging—Real Snapshot Technology—Cubert GmbH. Available online: https://cubert-gmbh.com/ (accessed on 3 April 2019).
- SphereOptics Zenith LiteTM Ultralight Targets. Available online: http://sphereoptics.de/en/product/zenith-lite-ultralight-targets/ (accessed on 22 July 2019).
- Cao, F.; Yang, Z.; Ren, J.; Jiang, M.; Ling, W.-K. Does normalization methods play a role for hyperspectral image classification? arXiv 2017, arXiv:1710.02939. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Max, K.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; The R Core Team; et al. Caret: Classification and Regression Training 2018. Available online: https://cran.r-project.org/web/packages/caret/index.html (accessed on 22 June 2019).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ismail, R.; Mutanga, O.; Kumar, L. Modeling the potential distribution of pine forests susceptible to Sirex Noctilio infestations in Mpumalanga, South Africa. Trans. GIS 2010, 14, 709–726. [Google Scholar] [CrossRef]
- Raschka, S. Model evaluation, model selection, and algorithm selection in machine learning. arXiv 2018, arXiv:1811.12808. [Google Scholar]
- Kvalseth, T.O. Cautionary note about R2. Am. Stat. 1985, 39, 279–285. [Google Scholar]
- Li, W.; Niu, Z.; Chen, H.; Li, D.; Wu, M.; Zhao, W. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecol. Indic. 2016, 67, 637–648. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating biomass of barley using Crop Surface Models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef]
- Cunliffe, A.M.; Brazier, R.E.; Anderson, K. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens. Environ. 2016, 183, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Lambert, M.J.; Blaes, X.; Traore, P.S.; Defourny, P. Estimate yield at parcel level from S2 time serie in Sub-Saharan smallholder farming systems. In Proceedings of the 2017 9th International Workshop, Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, Belgium, 14 November 2017. [Google Scholar]
- Rama Rao, N.; Garg, P.K.; Ghosh, S.K. Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data. Precis. Agric. 2007, 8, 173–185. [Google Scholar]
- Pimstein, A.; Karnieli, A.; Bonfil, D.J. Wheat and maize monitoring based on ground spectral measurements and multivariate data analysis. J. Appl. Remote Sens. 2007, 1, 013530. [Google Scholar]
- Freeman, K.W.; Girma, K.; Arnall, D.B.; Mullen, R.W.; Martin, K.L.; Teal, R.K.; Raun, W.R. By-plant prediction of corn forage biomass and nitrogen uptake at various growth stages using remote sensing and plant height. Agron. J. 2007, 99, 530–536. [Google Scholar] [CrossRef]
- Baez-Gonzalez, A.D.; Chen, P.; Tiscareno-Lopez, M.; Raghavan, S. Using satellite and field data with crop growth modeling to monitor and estimate corn yield in Mexico. Crop Sci. 2002, 42, 1943–1949. [Google Scholar] [CrossRef]
- Reddersen, B.; Fricke, T.; Wachendorf, M. A multi-sensor approach for predicting biomass of extensively managed grassland. Comput. Electron. Agric. 2014, 109, 247–260. [Google Scholar] [CrossRef]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Manjunath, K.R.; Ray, S.S.; Panigrahy, S. Discrimination of spectrally-close crops using ground-based hyperspectral data. J. Indian Soc. Remote Sens. 2011, 39, 599–602. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Asner, G.P.; Ollinger, S.V.; Martin, M.E.; Wessman, C.A. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 2009, 113, S78–S91. [Google Scholar] [CrossRef]
- Ollinger, S.V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2011, 189, 375–394. [Google Scholar] [CrossRef] [PubMed]
Years | 2016 | 2017 | 2018 |
---|---|---|---|
Rainfall (mm) | 403.4 | 763.2 | 264.8 |
Temperature (°C) | 23.51 | 23.48 | 23.28 |
Experiments | Number of Samples in R | Number of Samples in I | ||||
---|---|---|---|---|---|---|
Year | 2016 | 2017 | 2018 | 2016 | 2017 | 2018 |
Lablab | 60 | 60 | 12 | 52 | 60 | 12 |
Maize | 48 | 48 | 12 | 60 | 48 | 12 |
Finger millet | 60 | 36 | 12 | 52 | 36 | 12 |
Total annual crop-wise | 168 | 144 | 36 | 164 | 144 | 36 |
Total experiment-wise | 348 | 344 | ||||
Grand total | 692 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dayananda, S.; Astor, T.; Wijesingha, J.; Chickadibburahalli Thimappa, S.; Dimba Chowdappa, H.; Mudalagiriyappa; Nidamanuri, R.R.; Nautiyal, S.; Wachendorf, M. Multi-Temporal Monsoon Crop Biomass Estimation Using Hyperspectral Imaging. Remote Sens. 2019, 11, 1771. https://doi.org/10.3390/rs11151771
Dayananda S, Astor T, Wijesingha J, Chickadibburahalli Thimappa S, Dimba Chowdappa H, Mudalagiriyappa, Nidamanuri RR, Nautiyal S, Wachendorf M. Multi-Temporal Monsoon Crop Biomass Estimation Using Hyperspectral Imaging. Remote Sensing. 2019; 11(15):1771. https://doi.org/10.3390/rs11151771
Chicago/Turabian StyleDayananda, Supriya, Thomas Astor, Jayan Wijesingha, Subbarayappa Chickadibburahalli Thimappa, Hanumanthappa Dimba Chowdappa, Mudalagiriyappa, Rama Rao Nidamanuri, Sunil Nautiyal, and Michael Wachendorf. 2019. "Multi-Temporal Monsoon Crop Biomass Estimation Using Hyperspectral Imaging" Remote Sensing 11, no. 15: 1771. https://doi.org/10.3390/rs11151771
APA StyleDayananda, S., Astor, T., Wijesingha, J., Chickadibburahalli Thimappa, S., Dimba Chowdappa, H., Mudalagiriyappa, Nidamanuri, R. R., Nautiyal, S., & Wachendorf, M. (2019). Multi-Temporal Monsoon Crop Biomass Estimation Using Hyperspectral Imaging. Remote Sensing, 11(15), 1771. https://doi.org/10.3390/rs11151771