Different Agricultural Responses to Extreme Drought Events in Neighboring Counties of South and North Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Agricultural Management
2.3. Landcover
2.4. Meteorological Drought Index
2.5. Agricultural Drought Index
3. Results
3.1. Time Series of SPI3
3.2. SPI3 and VHI3 during Drought Event
3.3. TCI3 and VCI3 during Drought Event
3.4. Spatial Analysis of SPI3, VHI3, TCI3, and VCI3
3.5. Relation between VCI3 and Capacity of Reservoirs
3.6. Relation between SPI3 and VCI3
4. Discussion
5. Conclusions
- (1)
- The change in VHI3, an agricultural drought index, can causally occur from severe meteorological drought. The strength of the agricultural drought would then be worse in the second meteorological drought year due to the continuation of a water shortage.
- (2)
- Agriculture is essentially defined as an artificial management to enhance the crop plant value. However, the levels of cultivation skill and irrigation system can highly alleviate the strength of agricultural drought deepened from the meteorological dryness. The water shortage on the crop growth in South Korea can be overcome through the relatively high level of agricultural management, but it is not prevented in North Korea because of the relatively low level of agricultural management.
- (3)
- VHI consists of TCI and VCI. Both TCI and VCI reflect the land conditions. In South and North Korea, VCI has a different response to a similar lack of rainfall, unlike TCI, because the vegetation is critically affected by agricultural management, particularly as the irrigation system. The crop growth under meteorological drought condition is not decreased owing to the reservoir water and goes as far as to be increased with rich insolation duration.
- (4)
- The surface thermal condition, indicated by TCI, will be commonly influenced by solar radiation, air temperature, and soil moisture. However, the TCIs in South and North Korea are quite similar, even under different soil moisture conditions caused by the irrigation water supply. This weak effect on the TCI of soil moisture is not well-analyzed, and thus, further study is required in different regions with satellite images of various resolutions.
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hazaymeh, K.; Hassan, Q.K. Remote sensing of agricultural drought monitoring: A state of art review. AIMS Environ. Sci. 2016, 3, 604–630. [Google Scholar] [CrossRef]
- Du, L.; Tian, Q.; Yu, T.; Meng, Q.; Jancso, T.; Udvardy, P.; Huang, Y. A comprehensive drought monitoring method integrating MODIS and TRMM data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 245–253. [Google Scholar] [CrossRef]
- Yu, C.; Li, C.; Xin, Q.; Chen, H.; Zhang, J.; Zhang, F.; Li, X.; Clinton, N.; Huang, X.; Yue, Y.; et al. Dynamic assessment of the impact of drought on agricultural yield and scale-dependent return periods over large geographic regions. Environ. Model. Softw. 2014, 62, 454–464. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P.; Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 2014, 34, 2792–2804. [Google Scholar] [CrossRef]
- Nam, W.H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought hazard assessment in the context of climate change for South Korea. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- Anjum, S.A.; Ashraf, U.; Zohaib, A.; Tanveer, M.; Naeem, M.; Ali, I.; Tabassum, T.; Nazir, U. Growth and development responses of crop plants under drought stress: A review. Zemdirbyste 2017, 104, 267–276. [Google Scholar] [CrossRef]
- Yu, M.; Cho, Y.; Kim, T.W.; Chae, H.S. Analysis of drought propagation using hydrometeorological data: From meteorological drought to agricultural drought. J. Korea Water Resour. Assoc. 2018, 51, 195–205, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Bandara, J.S.; Cai, Y. The impact of climate change on food crop productivity, food prices and food security in South Asia. Econ. Anal. Policy 2014, 44, 451–465. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.; Pan, Y.; Li, S.; Liu, Y.; Ma, Y. Agricultural drought monitoring: Progress, challenges, and prospects. J. Geogr. Sci. 2016, 26, 750–767. [Google Scholar] [CrossRef] [Green Version]
- Manesh, M.B.; Khosravi, H.; Alamdarloo, E.H.; Alekasir, M.S.; Gholami, A.; Singh, V.P. Linkage of agricultural drought with meteorological drought in different climates of Iran. Theor. Appl. Climatol. 2019, 1–9. [Google Scholar] [CrossRef]
- Kogan, F.N. Operational space technology for global vegetation assessment. Bull. Am. Meteorol. Soc. 2001, 82, 1949–1964. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef] [Green Version]
- Du, T.; Bui, D.; Nguyen, M.; Lee, H. Satellite-Based, Multi-Indices for Evaluation of Agricultural Droughts in a Highly Dynamic Tropical Catchment, Central Vietnam. Water 2018, 10, 659. [Google Scholar] [CrossRef]
- Zhang, L.; Jiao, W.; Zhang, H.; Huang, C.; Tong, Q. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sens. Environ. 2017, 190, 96–106. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Jang, E.; Rhee, J. Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions. Agric. For. Meteorol. 2016, 216, 157–169. [Google Scholar] [CrossRef]
- Park, S.Y.; Sur, C.; Kim, J.S.; Lee, J.H. Evaluation of multi-sensor satellite data for monitoring different drought impacts. Stoch. Environ. Res. Risk Assess. 2018, 32, 2551–2563. [Google Scholar] [CrossRef]
- Wu, D.; Qu, J.J.; Hao, X. Agricultural drought monitoring using MODIS-based drought indices over the USA Corn Belt. Int. J. Remote Sens. 2015, 36, 5403–5425. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, N.; Li, J.; Chen, Z.; Niyogi, D. Multi-sensor integrated framework and index for agricultural drought monitoring. Remote Sens. Environ. 2017, 188, 141–163. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ. 2003, 87, 85–98. [Google Scholar] [CrossRef]
- Mishra, A.K.; Desai, V.R.; Singh, V.P. Drought forecasting using a hybrid stochastic and neural network model. J. Hydrol. Eng. 2007, 12, 626–638. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Nishida, K.; Nemani, R.R.; Glassy, J.M.; Running, S.W. Development of an evapotranspiration index from Aqua/MODIS for monitoring surface moisture status. IEEE Trans. Geosci. Remote Sens. 2003, 41, 493–501. [Google Scholar] [CrossRef]
- Cho, J.; Ryu, J.H.; Yeh, P.J.F.; Lee, Y.W.; Hong, S. Satellite-based assessment of Amazonian surface dryness due to deforestation. Remote Sens. Lett. 2016, 7, 71–80. [Google Scholar] [CrossRef]
- Kogan, F. World droughts in the new millennium from AVHRR-based vegetation health indices. Eos Trans. Am. Geophys. Union 2002, 83, 557–563. [Google Scholar] [CrossRef]
- Jing, Y.; Li, J.; Weng, Y.; Wang, J. The assessment of drought relief by typhoon Saomai based on MODIS remote sensing data in Shanghai, China. Nat. Hazards 2014, 71, 1215–1225. [Google Scholar] [CrossRef]
- Cunha, A.P.M.; Alvalá, R.C.; Nobre, C.A.; Carvalho, M.A. Monitoring vegetative drought dynamics in the Brazilian semiarid region. Agric. For. Meteorol. 2015, 214, 494–505. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Qian, X.; Liang, L.; Shen, Q.; Sun, Q.; Zhang, L.; Liu, Z.; Zhao, S.; Qin, Z. Drought trends based on the VCI and its correlation with climate factors in the agricultural areas of China from 1982 to 2010. Environ. Monit. Assess. 2016, 188, 639. [Google Scholar] [CrossRef]
- Wilhelmi, O.V.; Wilhite, D.A. Assessing vulnerability to agricultural drought: A Nebraska case study. Nat. Hazards 2002, 25, 37–58. [Google Scholar] [CrossRef]
- Miyan, M.A. Droughts in Asian least developed countries: Vulnerability and sustainability. Weather Clim. Extrem. 2015, 7, 8–23. [Google Scholar] [CrossRef]
- Hwang, S.K. Explanation of Major Indicators. In Major Statistics Indicators of North Korea; Yoon, Y.O., Ed.; Statistics Korea: Daejeon, Korea, 2017; ISSN 2005-5242. Available online: http://kosis.kr/upsHtml/upload/Magazine/NEW/IF/bukhanY17.pdf (accessed on 18 July 2019).
- Hwang, S.K. Statistical Indicators of South & North Korea. In Major Statistics Indicators of North Korea; Yoon, Y.O., Ed.; Statistics Korea: Daejeon, Korea, 2017; ISSN 2005-5242. Available online: http://kosis.kr/upsHtml/upload/Magazine/NEW/IF/bukhanY17.pdf (accessed on 18 July 2019).
- Rhie, J.H.; Lee, K.S.; Seo, I.H.; Min, S.W.; Chung, D.Y. Assessing the Limits of Agricultural Situation for the Food Security in North Korea. Korean J. Soil. Sci. Fert. 2017, 50, 275–284. [Google Scholar] [CrossRef] [Green Version]
- UN Food and Agriculture Organization (FAO). Global Information and Early Warning System (GIEWS). Special Alert No. 340. 2017. Available online: http://www.fao.org/3/a-i7544e.pdf (accessed on 18 July 2019).
- Ministry for Food, Agriculture, Forestry and Fisheries; Korea Rural Community Corporation Statistical Tables. Statistical Yearbook of Land and Water Development for Agriculture 2016; Korea Rural Community Corporation, Rural Research Institute, Ed.; Ministry for Food, Agriculture, Forestry and Fisheries: Ansan, Korea; Korea Rural Community Corporation: Ansan, Korea, 2017; Available online: http://rims.ekr.or.kr/stat_print/doun/2017.pdf (accessed on 18 July 2019).
- Jang, J.S. Basic research. In Research Report 2016; Rural Research Institute: Ansan, Korea, 2017; Available online: https://rri.ekr.or.kr/cop/bbs/selectBoardArticle.do?bbsId=BBSMSTR_000000000039&nttId=4609&bbsTyCode=BBST01&bbsAttrbCode=BBSB02&authFlag=&pageIndex=1&searchBgnDe=&searchEndDe=&searchCnd=&searchWrd=&year=&searchNat=&searchOrg=&searchCd=&searchCo=&koYn=Y (accessed on 18 July 2019).
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Son, S.; Kim, J. Accuracy assessment of global land cover datasets in South Korea. Korean J. Remote Sens. 2018, 34, 601–610. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Hayes, M.J.; Knutson, C.L. Drought preparedness planning: Building institutional capacity. In Drought and Water Crises: Science, Technology, and Management Issues; Wilhite, D.A., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 93–135. [Google Scholar]
- Belal, A.A.; El-Ramady, H.R.; Mohamed, E.S.; Saleh, A.M. Drought risk assessment using remote sensing and GIS techniques. Arab. J. Geosci. 2014, 7, 35–53. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Vicente-Serrano, S.M. Differences in spatial patterns of drought on different time scales: An analysis of the Iberian Peninsula. Water Resour. Manag. 2006, 20, 37–60. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Kimball, J.S.; McDowell, N.G.; Running, S.W. A remotely sensed global terrestrial drought severity index. Bull. Am. Meteorol. Soc. 2013, 94, 83–98. [Google Scholar] [CrossRef]
- Rimkus, E.; Stonevičius, E.; Korneev, V.; Kažys, J.; Valiuškevičius, G.; Pakhomau, A. Dynamics of meteorological and hydrological droughts in the Neman river basin. Environ. Res. Lett. 2013, 8, 045014. [Google Scholar] [CrossRef] [Green Version]
- Cunha, A.P.M.; Tomasella, J.; Ribeiro-Neto, G.G.; Brown, M.; Garcia, S.R.; Brito, S.B.; Carvalho, M.A. Changes in the spatial–temporal patterns of droughts in the Brazilian Northeast. Atmos. Sci. Lett. 2018, 19, e855. [Google Scholar] [CrossRef]
- Sepulcre-Canto, G.; Horion, S.M.A.F.; Singleton, A.; Carrao, H.; Vogt, J. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Nat. Hazards Earth Syst. Sci. 2012, 12, 3519–3531. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Sun, P.; Li, J.; Singh, V.P.; Liu, J. Spatiotemporal properties of droughts and related impacts on agriculture in Xinjiang, China. Int. J. Climatol. 2015, 35, 1254–1266. [Google Scholar] [CrossRef]
- Korean Meteorological Administration Home Page. Available online: https://data.kma.go.kr (accessed on 18 July 2019).
- Sobrino, J.A.; Li, Z.L.; Stoll, M.P.; Becker, F. Improvements in the split-window technique for land surface temperature determination. IEEE Trans. Geosci. Remote Sens. 1994, 32, 243–253. [Google Scholar] [CrossRef]
- Cong, D.; Zhao, S.; Chen, C.; Duan, Z. Characterization of droughts during 2001–2014 based on remote sensing: A case study of Northeast China. Ecol. Inform. 2017, 39, 56–67. [Google Scholar] [CrossRef]
- Ma’rufah, U.; Hidayat, R.; Prasasti, I. Analysis of relationship between meteorological and agricultural drought using standardized precipitation index and vegetation health index. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 012008. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, C.; Obringer, R.; Li, D.; Chen, N.; Niyogi, D. Gauging the severity of the 2012 Midwestern US drought for agriculture. Remote Sens. 2017, 9, 767. [Google Scholar] [CrossRef]
- Gessner, U.; Naeimi, V.; Klein, I.; Kuenzer, C.; Klein, D.; Dech, S. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia. Glob. Planet. Chang. 2013, 110, 74–87. [Google Scholar] [CrossRef]
- Ahn, S.R.; Park, M.J.; Park, G.; Kim, S.J. The effect of meteorological factors on the temporal variation of agricultural reservoir storage. J. Korean Soc. Agric. Eng. 2007, 49, 3–12, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Lee, M.K.; Lee, H.S.; Jang, S.H.; Lee, J.K. An Assessment of Continuous Streamflow Simulation at Imjin River Shared by South and North Korea. Crisisonomy 2017, 13, 109–118, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Jang, S.H.; Lee, J.K.; Oh, J.H.; Lee, H.S. Drought and water deficit analysis in Imjin river basin: Focusing on influence of Hwanggang dam in North Korea. Crisisonomy 2016, 12, 79–95, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Kamara, A.Y.; Menkir, A.; Badu-Apraku, B.; Ibikunle, O. The influence of drought stress on growth, yield and yield components of selected maize genotypes. J. Agric. Sci. 2003, 141, 43–50. [Google Scholar] [CrossRef]
- UN Food and Agriculture Organization (FAO). Global Information and Early Warning System (GIEWS). GIEWS Updates. 27 April 2016. Available online: http://www.fao.org/3/a-i5572e.pdf (accessed on 18 July 2019).
- Takai, T.; Matsuura, S.; Nishio, T.; Ohsumi, A.; Shiraiwa, T.; Horie, T. Rice yield potential is closely related to crop growth rate during late reproductive period. Field Crops Res. 2006, 96, 328–335. [Google Scholar] [CrossRef]
- UN Food and Agriculture Organization (FAO). Global Information and Early Warning System (GIEWS). GIEWS Updates. 3 February 2015. Available online: http://www.fao.org/3/a-i4363e.pdf (accessed on 18 July 2019).
- Hong, S.Y.; Na, S.I.; Lee, K.D.; Kim, Y.S.; Baek, S.C. A study on estimating rice yield in DPRK using MODIS NDVI and rainfall data. Korean J. Remote Sens. 2015, 31, 441–448. [Google Scholar] [CrossRef]
Agricultural Area (km2)a | Number of Reservoirs | Number of Pumping Station | Irrigation Canal (km)a | |
---|---|---|---|---|
South Korea | 16,460 | 17,313 | 7,052 | 117,457 |
North Korea | 19,100 | 1910 | 36,400 | 51,400 |
Range of SPI | Drought Classes of SPI | Range of VHI, TCI, and VCI | Drought Classes of VHI, TCI, and VCI |
---|---|---|---|
More than 2.00 | Extremely wet | More than 60.00 | Wet |
1.50 to 1.99 | Very wet | ||
1.00 to 1.49 | Moderately wet | ||
−0.99 to 0.99 | Near normal | 40.00 to 59.99 | Normal |
−1.00 to −1.49 | Moderately dry | 30.00 to 30.99 | Mild |
20.00 to 20.99 | Moderate | ||
−1.50 to −1.99 | Severely dry | 10.00 to 10.99 | Severe |
Less than −2.00 | Extremely dry | 0.00 to 9.99 | Extreme |
Observation | Data Type | Drought Index | Input Variables | Periods |
---|---|---|---|---|
Weather stations | Vector (Point) | SPI3 | 3-month Precipitation | 2003–2017 |
Satellite (Aqua/MODIS) | Raster (1 × 1 km pixel) | VHI3 | VCI3, TCI3 | 2003–2017 |
VCI3 | 3-month NDVI | 2003–2017 | ||
TCI3 | 3-month LST | 2003–2017 |
County | Drought Variables | 2014 | 2015 | ||||||
---|---|---|---|---|---|---|---|---|---|
SPI3 | VHI3 | TCI3 | VCI3 | SPI3 | VHI3 | TCI3 | VCI3 | ||
Paju (South Korea) | Durationa | 7 | 4 | 9 | 1 | 6 | 10 | 12 | 3 |
Mean valueb | −1.70 | 29.91 | 21.75 | 37.88 | −1.60 | 26.76 | 12.02 | 27.13 | |
Intensityc | −2.30 | 24.53 | 2.58 | 37.88 | −2.13 | 14.45 | 12.02 | 24.96 | |
Gaesong (North Korea) | Duration | 9 | 9 | 12 | 8 | 9 | 12 | 10 | 8 |
Mean value | −1.60 | 26.84 | 22.68 | 31.41 | −1.32 | 21.77 | 7.56 | 20.03 | |
Intensity | −2.37 | 21.27 | 1.63 | 24.27 | −1.97 | 4.67 | 1.22 | 5.17 | |
Cheorwon (South Korea) | Duration | 8 | 3 | 6 | 1 | 1 | 5 | 10 | 3 |
Mean value | −1.93 | 26.17 | 17.95 | 34.81 | −1.12 | 32.21 | 18.43 | 35.32 | |
Intensity | −3.01 | 23.99 | 1.49 | 34.81 | −1.12 | 27.07 | 0.18 | 32.18 | |
Pyonggagn (North Korea) | Duration | 4 | 4 | 4 | 3 | 0 | 10 | 8 | 7 |
Mean value | −1.83 | 23.42 | 15.13 | 15.38 | − | 21.08 | 7.62 | 20.53 | |
Intensity | −2.43 | 15.22 | 3.93 | 9.18 | − | 8.11 | 2.24 | 11.13 |
Year | Target (10 million m3) | Actual (10 million m3) | Actual/Target (%) |
---|---|---|---|
2012 | 357 | 375 | 105.04% |
2013 | 357 | 364 | 101.96% |
2014 | 240 | 100 | 41.67% |
2015 | 245 | 233 | 95.10% |
2016 | 235 | 233 | 99.15% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, J.-H.; Han, K.-S.; Lee, Y.-W.; Park, N.-W.; Hong, S.; Chung, C.-Y.; Cho, J. Different Agricultural Responses to Extreme Drought Events in Neighboring Counties of South and North Korea. Remote Sens. 2019, 11, 1773. https://doi.org/10.3390/rs11151773
Ryu J-H, Han K-S, Lee Y-W, Park N-W, Hong S, Chung C-Y, Cho J. Different Agricultural Responses to Extreme Drought Events in Neighboring Counties of South and North Korea. Remote Sensing. 2019; 11(15):1773. https://doi.org/10.3390/rs11151773
Chicago/Turabian StyleRyu, Jae-Hyun, Kyung-Soo Han, Yang-Won Lee, No-Wook Park, Sungwook Hong, Chu-Yong Chung, and Jaeil Cho. 2019. "Different Agricultural Responses to Extreme Drought Events in Neighboring Counties of South and North Korea" Remote Sensing 11, no. 15: 1773. https://doi.org/10.3390/rs11151773
APA StyleRyu, J. -H., Han, K. -S., Lee, Y. -W., Park, N. -W., Hong, S., Chung, C. -Y., & Cho, J. (2019). Different Agricultural Responses to Extreme Drought Events in Neighboring Counties of South and North Korea. Remote Sensing, 11(15), 1773. https://doi.org/10.3390/rs11151773