Dust Storm Remote Sensing Monitoring Supported by MODIS Land Surface Reflectance Database
Abstract
:1. Introduction
2. Methods
2.1. Principles
2.1.1. Atmospheric Radiation Transfer
2.1.2. Spectrum Properties of Dust Storms and the Typical Land
2.2. Land Surface Reflectance Data Set Construction
2.3. Dust Storm Remote Sensing Monitoring Supported by the LSR Dataset
2.3.1. MODIS Data
2.3.2. Dynamic Threshold Method
2.3.3. Cloud Identification
3. Results and Discussion
3.1. Introduction to Validation Data
3.2. Results Evaluation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jickells, T.D.; An, Z.S.; Andersen, K.K.; Baker, A.R.; Bergametti, G.; Brooks, N.; Cao, J.J.; Boyd, P.W.; Duce, R.A.; Hunter, K.A.; et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 2005, 308, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Claquin, T.; Schulz, M.; Balkanski, Y.; Boucher, O. Uncertainties in assessing radiative forcing by mineral dust. Tellus B 1998, 50, 491–505. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S. IPCC (2007): Climate Change the Physical Science Basis. Am. Geophys. Union 2007, 9, 123–124. [Google Scholar]
- Zhao, T.X.P.; Ackerman, S.; Guo, W. Dust and Smoke Detection for Multi-Channel Imagers. Remote Sens. 2010, 2, 2347–2368. [Google Scholar] [CrossRef] [Green Version]
- Stone, E.A.; Yoon, S.C.; Schauer, J.J. Chemical Characterization of Fine and Coarse Particles in Gosan, Korea during Springtime Dust Events. Aerosol Air Qual. Res. 2011, 11, 31–43. [Google Scholar] [CrossRef]
- Tan, S.C.; Shi, G.Y.; Wang, H. Long-range transport of spring dust storms in Inner Mongolia and impact on the China seas. Atmos. Environ. 2012, 46, 299–308. [Google Scholar] [CrossRef]
- Li, H.P.; Xiong, L.Y.; Zhuang, D.F. Research Progress and Future Development of Remote Sensing Monitoring on Sand-dust Disaster in China. Prog. Geogr. 2003, 22, 45–52. [Google Scholar]
- Griggs, M. Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data. J. Air Pollut. Control Assoc. 1975, 25, 622–626. [Google Scholar] [CrossRef]
- Stowe, L.L.; Ignatov, A.M.; Singh, R.R. Development, validation, and potential enhancements to the second-generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration. J. Geophys. Res. Atmos. 1997, 102, 16923–16934. [Google Scholar] [CrossRef] [Green Version]
- Amato, T.E.; Andrew, K.H.; Michael, J.P. Development of a new over-water Advanced Very High Resolution Radiometer dust detection algorithm. Int. J. Remote Sens. 2006, 27, 3903–3924. [Google Scholar]
- Di, A.; Xue, Y.; Yang, X.; Leys, J.; Guang, J.; Mei, L.; Che, Y. Dust Aerosol Optical Depth Retrieval and Dust Storm Detection for Xinjiang Region Using Indian National Satellite Observations. Remote Sens. 2016, 8, 702. [Google Scholar] [CrossRef]
- Yang, Y.K.; Sun, L.; Zhu, J.S.; Wei, J.; Su, Q.H.; Sun, W.X.; Liu, F.W.; Shu, M.Y. A simplified Suomi NPP VIIRS dust detection algorithm. J. Atmos. Solar-Terr. Phys. 2017, 164, 314–323. [Google Scholar] [CrossRef]
- Roskovensky, K.J.; Liou, K.N. Differentiating airborne dust from cirrus clouds using MODIS data. Geophys Res Lett. 2005, 32, 12809. [Google Scholar] [CrossRef]
- Miller, S.D. A consolidated technique for enhancing desert dust storms with MODIS. Geophys. Res. Lett. 2003, 30, 20. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, N.M.; Hu, X.Q.; Dong, C.H. Identification and physical retrieval of dust storm using three MODIS thermal IR channels. Glob. Planet. Change 2006, 52, 197–206. [Google Scholar] [CrossRef]
- Ackerman, S.A. Remote sensing aerosols using satellite infrared observations. J. Geophys. Res. Atmos. 1997, 102, 17069–17079. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, T.; Gu, X.; Yu, T.; Wu, Y.; Chen, H. New Asia Dust Storm Detection Method Based on the Thermal Infrared Spectral Signature. Remote Sens. 2015, 7, 51–71. [Google Scholar] [CrossRef]
- Matiellanovak, M.A.; Watson, M.I.; Delgadogranados, H.; Rose, W.I.; CárdenasGonzález, L.; Realmuto, V.J. Volcanic emissions from popocatépetl volcano, mexico, quantified using moderate resolution imaging spectroradiometer (modis) infrared data: A case study of the december 2000–January 2001 emissions. J. Volcanol. Geoth Res. 2007, 170, 76–85. [Google Scholar]
- Sun, L.; Wei, J.; Wang, J.; Mi, X.; Guo, Y.; Lv, Y.; Yang, Y.; Gan, P.; Zhou, X.; Jia, C.; et al. A Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA) supported by a prior surface reflectance database. J. Geophys. Res. Atmos. 2016, 121, 7172–7196. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Cheng, X. Dust detection over desert surfaces with thermal infrared bands using dynamic reference brightness temperature differences. J. Geophys. Res. Atmos. 2013, 118, 8566–8584. [Google Scholar] [CrossRef]
- She, L.; Xue, Y.; Yang, X.; Guang, J.; Li, Y.; Che, Y.; Fan, F.; Xie, Y. Dust detection and intensity estimation using Himawari-8/AHI observation. Remote Sens. 2018, 10, 490. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Chen, J.; Ma, L.; Chen, X.H.; Rao, Y.H. Research progress of spectral mixture analysis. J. Remote Sens. 2016, 20, 1102–1109. [Google Scholar]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Sun, C.K.; Liu, Q.H.; Zhong, B. Aerosol optical depth retrieval by HJ-1/CCD supported by MODIS surface reflectance data. Sci. China Earth Sci. 2010, 53, 74–80. [Google Scholar] [CrossRef]
- Sun, L.; Yu, H.; Fu, Q.; Wang, J.; Tian, X.; Mi, X. Aerosol optical depth retrieval and atmospheric correction application for GF-1 PMS supported by land surface reflectance data. J. Remote Sens. 2016, 20, 216–228. [Google Scholar]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Sun, L.; Wei, J.; Bilal, M.; Tian, X.; Jia, C.; Guo, Y.; Mi, X. Aerosol optical depth retrieval over Bright areas using landsat 8 OLI images. Remote Sens. 2016, 8, 23. [Google Scholar] [CrossRef]
- Qu, J.J.; Hao, X.; Kafatos, M.; Wang, L. Asian Dust Storm Monitoring Combining Terra and Aqua MODIS SRB Measurements. IEEE Geosci. Remote Sens. 2006, 3, 484–486. [Google Scholar] [CrossRef]
- Guo, N.; Cai, D.H.; Han, L.Y.; Liang, Y.; Li, M.X. Introduction to the Operational System and Identification Method of Dust Strom Based on MODIS. Meteorol. Mon. 2009, 35, 102–107. [Google Scholar]
- Jafari, R.; Malekian, M. Comparison and evaluation of dust detection algorithms using MODIS Aqua/Terra Level 1B data and MODIS/OMI dust products in the Middle East. Int. J. Remote Sens. 2015, 36, 597–617. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, M.; Liu, T. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate. J. Geophys. Res. Atmos. 2001, 106, 10325–10333. [Google Scholar] [CrossRef]
- Tsolmon, R.; Ochirkhuyag, L.; Sternberg, T. Monitoring the source of trans-national dust storms in north east Asia. Int. J. Digit Earth. 2008, 1, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Wang, S.; Yu, T.; Gu, X.; Zhang, X.; Wang, W.; Ren, S. Changes in Aerosol Optical and Micro-Physical Properties over Northeast Asia from a Severe Dust Storm in April 2014. Remote Sens. 2016, 8, 394. [Google Scholar] [CrossRef]
- Su, Q.; Sun, L.; Yang, Y.; Zhou, X.; Li, R.; Jia, S. Dynamic Monitoring of the Strong Sandstorm Migration in Northern and Northwestern China via Satellite Data. Aerosol Air Qual. Res. 2017, 17, 3244–3252. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Ge, J.; Weng, F. Detection of Asia dust storms using multisensor satellite measurements. Remote Sens. Environ. 2007, 110, 186–191. [Google Scholar] [CrossRef]
- Fu, P.; Zhong, S.; Huang, J.; Song, G. An observational study of aerosol and turbulence properties during dust storms in northwest China. J. Geophys. Res. Atmos. 2012, 117, 1–12. [Google Scholar] [CrossRef]
- Luo, J.N.; Xu, Z.; Qi, Y.G. Global dust remote sensing with the Feng Yun-3 satellite. J. Desert Res. 2015, 35, 690–698. [Google Scholar]
- Luo, B.; Tan, X.; Guo, Y. Introduction of MICAPS-A Chinese forecaster’s interactive system. In Proceedings of the 86th AMS Annual Meeting/8th Conference on Atmospheric Chemistry, Atlanta, GA, USA, 27 January–3 February 2006. [Google Scholar]
- Huang, X.X.; Wang, T.J.; Jiang, F.; Liao, J.B.; Cai, Y.F.; Yin, C.Q.; Zhu, J.L.; Han, Y. Studies on a severe dust storm in East Asia and its impact on the air quality of Nanjing, China. Aerosol Air Qual. Res. 2013, 13, 179–193. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Nastos, P.T.; Kosmopoulos, P.G.; Kambezidis, H.D.; Kharol, S.K.; Badarinath, K.V.S. The Aura–OMI Aerosol Index distribution over Greece. Atmos. Res. 2010, 98, 28–39. [Google Scholar] [CrossRef]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Atmos. 2007, 112, 1–14. [Google Scholar] [CrossRef]
- Hsu, N.C.; Herman, J.R.; Torres, O.; Holben, B.N.; Tanre, D.; Eck, T.F.; Smirnov, A.; Chatenet, B.; Lavenu, F. Comparisons of the TOMS aerosol index with Sun-photometer aerosol optical thickness: Results and applications. J. Geophys. Res. Atmos. 1999, 104, 6269–6279. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kambezidis, H.D.; Nastos, P.T.; Kosmopoulos, P.G. Study on an intense dust storm over Greece. Atmos. Environ. 2008, 42, 6884–6896. [Google Scholar] [CrossRef]
Name | Description | Pixel Size | Temporal Granularity |
---|---|---|---|
MOD09GQ | MODIS band 1–2 daily surface reflectance | 250 m | Daily |
MOD09GA | MODIS band 1–7 daily surface reflectance | 500 m, 1 km | Daily |
MOD09Q1 | MODIS band 1–2 surface reflectance | 250 m | 8-Day |
MOD09A1 | MODIS band 1–7 surface reflectance | 500 m | 8-Day |
MOD09CMG | MODIS band 1–7 surface reflectance | 0.05 Deg | Daily |
Band | Wavelength (μm) | Central Wavelength (μm) | Spatial Resolution |
---|---|---|---|
1 | 0.620∼0.670 | 0.645 | 250 m × 250 m |
3 | 0.459∼0.479 | 0.469 | 500 m × 500 m |
4 | 0.545∼0.565 | 0.555 | 500 m × 500 m |
6 | 1.628∼1.652 | 1.64 | 500 m × 500 m |
7 | 2.105∼2.155 | 2.13 | 500 m × 500 m |
Parameters | Parameter Setting |
---|---|
Surface reflectance | 0.01, 0.1:0.1:0.8 |
Aerosol optical depth | 0.00001, 0.05:0.05:0.8 |
Solar zenith angle | 0:6:72 |
View zenith angle | 0:6:72 |
Relative azimuth angle | 0:12:180 |
Atmospheric model | Midlatitude summer, Midlatitude winter |
Aerosol model | Urban model, Continental model, Maritime model, Desert model |
Imaging Time (UTC) | MICAPS Observing Time (UTC) | OMI AI Data Acquiring Time (UTC) |
---|---|---|
04:20 27 March 2015 03:15 | 3:00 27 March 2015 03:00 | 05:14 27 March 2015 04:09 |
15 April 2015 06:10 | 15 April 2015 06:00 | 15 April 2015 06:56 |
04 March 2016 | 04 March 2016 | 04 March 2016 |
03:00 05 May 2016 | 03:00 05 May 2016 | 03:58 05 May 2016 |
Code | Code Meaning | Code | Code Meaning |
---|---|---|---|
6 | Dust in suspension | 7 | Floating dust |
8 | Dust devil | 9 | Dust storms |
30 | Milddust storms weakened in the past hour | 31 | Mild dust storm |
32 | Milddust storms enhanced in the past hour | 33 | Strong dust storms decreases in the past hour |
34 | Strong dust storms | 35 | Strong dust storms enhanced in the past hour |
Imagery Acquiring Time (UTC) | Ground Sites Observing Time (UTC) | Ground Sites Number | Ground Sites Number with Accurate Results | Cloud Covered Ground Sites Number | Ground Sites Number with No Record |
---|---|---|---|---|---|
04:20 27 March 2015 | 03:00 27 March 2015 | 9 | 6 | 2 | 1 |
03:15 15 April 2015 | 03:00 15 April 2015 | 18 | 7 | 11 | 0 |
06:10 04 March 2016 | 06:00 04 March 2016 | 116 | 34 | 81 | 1 |
03:00 05 May 2016 | 03:00 05 May 2016 | 25 | 13 | 12 | 0 |
Ground sites amount | 168 | 60 | 106 | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, K.; Su, Q.; Ming, Y. Dust Storm Remote Sensing Monitoring Supported by MODIS Land Surface Reflectance Database. Remote Sens. 2019, 11, 1772. https://doi.org/10.3390/rs11151772
Sun K, Su Q, Ming Y. Dust Storm Remote Sensing Monitoring Supported by MODIS Land Surface Reflectance Database. Remote Sensing. 2019; 11(15):1772. https://doi.org/10.3390/rs11151772
Chicago/Turabian StyleSun, Ke, Qinghua Su, and Yanfang Ming. 2019. "Dust Storm Remote Sensing Monitoring Supported by MODIS Land Surface Reflectance Database" Remote Sensing 11, no. 15: 1772. https://doi.org/10.3390/rs11151772
APA StyleSun, K., Su, Q., & Ming, Y. (2019). Dust Storm Remote Sensing Monitoring Supported by MODIS Land Surface Reflectance Database. Remote Sensing, 11(15), 1772. https://doi.org/10.3390/rs11151772