Influence of Soil Background on Spectral Reflectance of Winter Wheat Crop Canopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Collection of Spectral and Field Data
2.2.2. Assessment of Soil Contribution to the Spectral Reflectance of the Crop Canopy
2.2.3. Assessment of Soil Type Influence on the Vegetation Indices of the Crop Canopy
2.2.4. Assessment of the Influence of the Soil Surface State on the Sensitivity of Vegetation Indices
3. Results
3.1. Spectral Reflectance of Analyzed Soil Types
3.2. The Analysis of Modeled Crop Reflectance
3.3. Soil Background Contribution to the Reflectance of Winter Wheat Crop Canopy (on the Basis of Modeled Refelctance of Winter Wheat Crop Canopy)
3.4. Effect of Soil Type on NDVI, SAVI and EVI2 Values at Different Stages of Winter Wheat Development (on the Basis of Field Data on Spectral Reflectance of Winter Wheat Crop Canopy)
3.4.1. Tillering Stage
3.4.2. Shooting Phase
3.4.3. Milky Ripeness Phase
3.4.4. Separability of Winter Wheat Crops Growing on Different Soil Types on the Basis of NDVI, EVI2 and SAVI (Results of Discriminant Analysis)
3.5. Effect of Soil Surface State on the Sensitivity of NDVI, EVI2 and SAVI (On the Basis of Field Data on Spectral Reflectance of Winter Wheat Crop Canopy)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Becker-Reshef, I.; Justice, C.; Sullivan, M.; Vermote, E.; Tucker, C.; Anyamba, A.; Small, J.; Pak, E.; Masuoka, E.; Schmaltz, J.; et al. Monitoring global croplands with coarse resolution earth observations: The global agriculture monitoring (GLAM) project. Remote Sens. 2010, 2, 1589–1609. [Google Scholar] [CrossRef]
- Loupian, E.A.; Savin, I.Y.; Bartalev, S.A.; Tolpin, V.A.; Balashov, I.V.; Plotnikov, D.E. Sputnikovyi servis monitoringa sostoyaniya rastitel’nosti (“VEGA”) (Satellite Service for Vegetation Monitoring VEGA). Sovrem. Probl. D. Zond. Zemli Kosmosa 2011, 8, 190–198. [Google Scholar]
- Eerens, H.; Piccard, I.; Royer, A.; Orlandi, S.; Genovese, G. Methodology of the MARS crop yield forecasting system. Remote Sens. Inf. Data Proc. Anal. 2004, 3, 53–56. [Google Scholar]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Wu, B.; Meng, J.; Li, Q.; Yan, N.; Du, X.; Zhang, M. Remote sensing-based global crop monitoring: Experiences with China’s CropWatch system. Int. J. Dig. Earth 2014, 7, 113–137. [Google Scholar] [CrossRef]
- Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sens. 2013, 5, 1704–1733. [Google Scholar] [CrossRef]
- Savin, I. Crop yield prediction with SPOT VGT in Mediterranean and Central Asian countries. In Proceedings of the ISPRS WG VIII/10 Workshop, Remote Sensing Support to Crop Yield Forecast and Area Estimates, Stresa, Italy, 30 November–1 December 2006; Volume 30, p. 129134. [Google Scholar]
- Savin, I.Y.; Bartalev, S.A.; Loupian, E.A.; Tolpin, V.A.; Khvostikov, S.A. Crop yield forecasting based on satellite data: Opportunities and perspectives. Sovrem. Probl. D. Zond. Zemli Kosmosa 2010, 7, 275–285. [Google Scholar]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef]
- Baret, F.; Buis, S. Estimating canopy characteristics from remote sensing observations: Review of methods and associated problems. In Advances in Land Remote Sensing; Springer: Dordrecht, The Netherlands, 2008; pp. 173–201. [Google Scholar]
- Kimes, D.S.; Knyazikhin, Y.; Privette, J.L.; Abuelgasim, A.A.; Gao, F. Inversion methods for physically-based models. Remote Sens. Rev. 2000, 18, 381–439. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Zurita-Milla, R.; de Wit, A.J.; Brazile, J.; Singh, R.; Schaepman, M.E. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Observ. Geoinf. 2007, 9, 165–193. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Atzberger, C.; van Wieren, S. Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture. Int. J. Appl. Earth Observ. Geoinf. 2008, 10, 358–373. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. Prospect: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Combal, B.; Baret, F.; Weiss, M.; Trubuil, A.; Mace, D.; Pragnere, A.; Myneni, R.; Knyazikhin, Y.; Wang, L. Retrieval of canopy biophysical variables from bidirectional reflectance: Using prior information to solve the ill-posed inverse problem. Remote Sens. Environ. 2003, 84, 1–15. [Google Scholar] [CrossRef]
- Meroni, M.; Colombo, R.; Panigada, C. Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sens. Environ. 2004, 92, 195–206. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef]
- Zhang, J.; Han, W.; Huang, L.; Zhang, Z.; Ma, Y.; Hu, Y. Leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. Sensors 2016, 16, 437. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, M.V.; Fereres, E. Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture. Remote Sens. Environ. 2016, 179, 89–103. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, H.-Y.; Zhang, Y.-S.; Qi, S.-L.; Heng, Y.-R.; Guo, B.-B.; Ma, D.-Y.; Guo, T.-C. Remote detection of canopy leaf nitrogen concentration in winter wheat by using water resistance vegetation indices from in-situ hyperspectral data. Field Crops Res. 2016, 198, 238–246. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Camino, C.; González-Dugo, V.; Hernández, P.; Sillero, J.C.; Zarco-Tejada, P.J. Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture. Int. J. Appl. Earth Observ. Geoinf. 2018, 70, 105–117. [Google Scholar] [CrossRef]
- Bogue, R. Sensors key to advances in precision agriculture. Sens. Rev. 2017, 37, 1–6. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; de Abelleyra, D.; Ferraz, R.P.D.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote sensing and cropping practices: A review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- Drake, N.A.; Mackin, S.; Settle, J.J. Mapping vegetation, soils, and geology in Semiarid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery. Remote Sens. Environ. 1999, 68, 12–25. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; van Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barthès, B.; Ben Dor, E.; Brown, D.J.; Clairotte, M.; Csorba, A.; et al. Soil spectroscopy: An alternative to wet chemistry for soil monitoring. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2015; Volume 132, pp. 139–159. ISBN 978-0-12-802135-4. [Google Scholar]
- Forkuor, G.; Hounkpatin, O.K.L.; Welp, G.; Thiel, M. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: A comparison of machine learning and multiple linear regression models. PLoS ONE 2017, 12, e0170478. [Google Scholar] [CrossRef]
- Pinheiro, É.; Ceddia, M.; Clingensmith, C.; Grunwald, S.; Vasques, G. Prediction of soil physical and chemical properties by visible and near-infrared diffuse reflectance spectroscopy in the Central Amazon. Remote Sens. 2017, 9, 293. [Google Scholar] [CrossRef]
- Wijewardane, N.K.; Ge, Y.; Morgan, C.L.S. Moisture insensitive prediction of soil properties from VNIR reflectance spectra based on external parameter orthogonalization. Geoderma 2016, 267, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Prudnikova, E.Y.; Savin, I.Y. The possibilities of soil line concept application for the detection of soil properties. In Global Soil Map-Digital Soil Mapping from Country to Globe; CRC Press: Boca Raton, FL, USA, 2017; pp. 97–101. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Z.; Chen, J.; Yang, W.; Yao, Y.; Zhang, C.; Cui, X.; Cao, X. Replacing the red band with the red-SWIR band (0.74ρred + 0.26ρswir) can reduce the sensitivity of vegetation indices to soil background. Remote Sens. 2019, 11, 851. [Google Scholar] [CrossRef]
- Jackson, R.D.; Huete, A.R. Interpreting vegetation indices. Prev. Vet. Med. 1991, 11, 185–200. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G.; Major, D.J. TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In Proceedings of the 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium, IEEE, Vancouver, BC, Canada, 10–14 July 1989; Volume 3, pp. 1355–1358. [Google Scholar]
- Jiang, Z.; Huete, A.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Kauth, R.J.; Thomas, G.S. The tasselled cap--a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In Proceedings of the LARS symposia, West Lafayette, Indiana, 29 June–1 July 1976; p. 159. [Google Scholar]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Baret, F.; Jacquemoud, S.; Hanocq, J.F. The soil line concept in remote sensing. Remote Sens. Rev. 1993, 7, 65–82. [Google Scholar] [CrossRef]
- Atzberger, C.; Jarmer, T.; Schlerf, M.; Kötz, B.; Werner, W. Retrieval of wheat bio-physical attributes from hyperspectral data and SAILH + PROSPECT radiative transfer model. In Proceedings of the 3rd EARSeL Workshop on imaging spectroscopy, Herrsching, Germany, 13–16 May 2003; pp. 473–482. [Google Scholar]
- Atzberger, C. Inverting the PROSAIL canopy reflectance model using neural nets trained on streamlined databases. J. Spectr. Imag. 2010, 1, a2. [Google Scholar] [CrossRef]
- Machwitz, M.; Giustarini, L.; Bossung, C.; Frantz, D.; Schlerf, M.; Lilienthal, H.; Wandera, L.; Matgen, P.; Hoffmann, L.; Udelhoven, T. Enhanced biomass prediction by assimilating satellite data into a crop growth model. Environ. Modell. Softw. 2014, 62, 437–453. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Wu, H.; Tang, B.-H.; Ma, L.; Zhao, E.; Li, C. Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data. Int. J. Appl. Earth Observ. Geoinf. 2014, 26, 12–20. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Matkan, A.A.; Ahangar, A.D. Inversion of a radiative transfer model for estimation of rice canopy chlorophyll content using a lookup-table approach. IEEE J. Select. Topics Applied Earth Observ. Remote Sens. 2012, 5, 1222–1230. [Google Scholar] [CrossRef]
- Prudnikova, E.Y.; Savin, I.Y. Study of the optical properties of an exposed soil surface. J. Opt. Technol. 2016, 83, 642. [Google Scholar] [CrossRef]
- Vindeker, G.V.; Prudnikova, E.Y.; Savin, I.Y. Transformation of open soil surface under the impact of rainfall in model experiment. Dokuchaev Soil Bull. 2018, 95, 23–40. [Google Scholar] [CrossRef]
- Eshel, G.; Levy, G.J.; Singer, M.J. Spectral reflectance properties of crusted soils under solar illumination. Soil Sci. Soc. Am. J. 2004, 68, 1982. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Goldlshleger, N.; Benyamini, Y.; Agassi, M.; Blumberg, D.G. The spectral reflectance Properties of soil structural crusts in the 1.2- to 2.5-μm spectral region. Soil Sci. Soc. Am. J. 2003, 67, 289. [Google Scholar] [CrossRef]
- Prudnikova, E.; Savin, I. Effect of open soil surface patterns on soil detectability based on optical remote sensing data. Proceedings 2018, 2, 357. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World reference base for soil resources 2014: International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resour. Rep. 2015, 106, 188. [Google Scholar]
- Savin, I.Y.; Dokukin, P.A.; Verniuk, Y.I.; Zhogolev, A.V. About the influence of weeds on spring barley NDVI determined from MODIS satellite data. Sovr. Probl. DZZ Kosm. 2017, 14, 185–195. [Google Scholar] [CrossRef]
- De Wit, A.; Roerink, G.; Bartalev, S.; Virchenko, O.; Plotnikov, D.; Savin, I.; Kleschenko, A. A dataset of spectral and biophysical measurements over Russian wheat fields. Open Data J. Agric. Res. 2018, 4, 22–27. [Google Scholar] [CrossRef]
- Demarez, V.; Duthoit, S.; Baret, F.; Weiss, M.; Dedieu, G. Estimation of leaf area and clumping indexes of crops with hemispherical photographs. Agric. Forest Meteorol. 2008, 148, 644–655. [Google Scholar] [CrossRef] [Green Version]
- Stevens, A.; Ramirez-Lopez, L.; Stevens, M.A.; Rcpp, L. Package ‘Prospectr’. Technical Report. 2015. Available online: ftp://rm.mirror.garr.it/mirrors/CRAN/web/packages/prospectr/prospectr.pdf (accessed on 19 August 2019).
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef]
- Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site. J. Geophys. Res. 1986, 91, 8098. [Google Scholar] [CrossRef]
- Deering, D.W. Rangeland Reflectance Characteristics Measured by Aircraft and Spacecraft Sensors. Ph.D. Thesis, Texas A&M Universtiy, College Station, TX, USA, 1978. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Lee, K.-S.; Cohen, W.B.; Kennedy, R.E.; Maiersperger, T.K.; Gower, S.T. Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sens. Environ. 2004, 91, 508–520. [Google Scholar] [CrossRef]
- Sharma, L.K. Evaluation of Active Optical Ground-Based Sensors to Detect Early Nitrogen Deficiencies in Corn. Ph.D. Thesis, North Dakota State University, Fargo, ND, USA, April 2014. [Google Scholar]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Xie, Q.; Dash, J.; Huang, W.; Peng, D.; Qin, Q.; Mortimer, H.; Casa, R.; Pignatti, S.; Laneve, G.; Pascucci, S. Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval. IEEE J. Select. Topics Appl. Earth Observ. Remote Sens. 2018, 11, 1482–1493. [Google Scholar] [CrossRef]
- Karnieli, A.; Sarafis, V. Reflectance spectrophotometry of cyanobacteria within soil crusts—A diagnostic tool. Int. J. Remote Sens. 1996, 17, 1609–1615. [Google Scholar] [CrossRef]
- Román, J.R.; Rodríguez-Caballero, E.; Rodríguez-Lozano, B.; Roncero-Ramos, B.; Chamizo, S.; Águila-Carricondo, P.; Cantón, Y. Spectral response analysis: An indirect and non-destructive methodology for the chlorophyll quantification of biocrusts. Remote Sens. 2019, 11, 1350. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.; Perry, E.M.; Akhmedov, B. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Observ. Geoinf. 2013, 21, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Haboudane, D.; Tremblay, N.; Miller, J.R.; Vigneault, P. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 423–437. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E.; D’Alessio, P. A broad-band leaf chlorophyll vegetation index at the canopy scale. Precis. Agric. 2008, 9, 303–319. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Major, D.J.; Baret, F.; Guyot, G. A ratio vegetation index adjusted for soil brightness. Int. J. Remote Sens. 1990, 11, 727–740. [Google Scholar] [CrossRef]
- Jasinski, M.F.; Eagleson, P.S. The structure of red-infrared scattergrams of semivegetated landscapes. IEEE Trans. Geosci. Remote Sens. 1989, 27, 441–451. [Google Scholar] [CrossRef]
- Galvão, L.S.; Vitorello, Í. Variability of laboratory measured soil lines of soils from southeastern Brazil. Remote Sens. Environ. 1998, 63, 166–181. [Google Scholar] [CrossRef]
- Huete, A.R.; Post, D.F.; Jackson, R.D. Soil spectral effects on 4-space vegetation discrimination. Remote Sens. Environ. 1984, 15, 155–165. [Google Scholar] [CrossRef]
- Yoshioka, H.; Miura, T.; Demattê, J.A.; Batchily, K.; Huete, A.R. Soil line influences on two-band vegetation indices and vegetation isolines: A numerical study. Remote Sens. 2010, 2, 545–561. [Google Scholar] [CrossRef]
Stage of Winter Wheat Development | Soil Type | ||
---|---|---|---|
Gray Forest | Alluvial | Chernozem | |
Tillering | 14 | 8 | 13 |
Shooting | 10 | 5 | 13 |
Milky ripeness | 10 | 4 | 9 |
Parts of Spectrum | NIR Reflectance | |||
---|---|---|---|---|
Maximum | Minimum | Average | ||
RED reflectance | Maximum | max | minmax | avmax |
Minimum | maxmin | min | avmin | |
Average | maxav | minav | av | |
RedEdge reflectance | edmax | edmin | adav |
Stage of Winter Wheat Development | Index | Calculated Combination | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Av | Maxmin | Minmax | Avmax | Avmin | Maxav | Minav | Edmax | Edmin | Edav | ||
Tillering | NDVI | 58.8 | 64.7 | 61.8 | 58.8 | 61.8 | 58.8 | 58.8 | 58.8 | 64.7 | 50 | 67.6 | 55.9 |
EVI2 | 85.3 | 85.3 | 85.3 | 85.3 | 85.3 | 85.3 | 85.3 | 85.3 | 85.3 | 91.2 | 88.2 | 94.1 | |
SAVI | 85.3 | 85.3 | 85.3 | 85.3 | 85.3 | 85.3 | 85.3 | 85.3 | 85.3 | 91.2 | 85.3 | 88.2 | |
Shooting | NDVI | 53.6 | 50 | 50 | 53.6 | 53.6 | 57.1 | 50 | 50 | 50 | 57.1 | 57.1 | 57.1 |
EVI2 | 71.4 | 71.4 | 71.4 | 75 | 67.9 | 71.4 | 75 | 71.4 | 71.4 | 46.4 | 50 | 50 | |
SAVI | 71.4 | 71.4 | 71.4 | 75 | 71.4 | 71.4 | 75 | 71.4 | 71.4 | 46.4 | 50 | 50 | |
Milky ripeness | NDVI | 69.6 | 60.9 | 65.2 | 65.2 | 69.6 | 69.6 | 65.2 | 65.2 | 65.2 | 78.3 | 82.6 | 82.6 |
EVI2 | 73.9 | 78.3 | 82.6 | 82.6 | 73.9 | 78.3 | 82.6 | 82.6 | 78.3 | 73.9 | 73.9 | 78.3 | |
SAVI | 73.9 | 78.3 | 78.3 | 82.6 | 73.9 | 60.9 | 82.6 | 82.6 | 73.9 | 73.9 | 78.3 | 78.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prudnikova, E.; Savin, I.; Vindeker, G.; Grubina, P.; Shishkonakova, E.; Sharychev, D. Influence of Soil Background on Spectral Reflectance of Winter Wheat Crop Canopy. Remote Sens. 2019, 11, 1932. https://doi.org/10.3390/rs11161932
Prudnikova E, Savin I, Vindeker G, Grubina P, Shishkonakova E, Sharychev D. Influence of Soil Background on Spectral Reflectance of Winter Wheat Crop Canopy. Remote Sensing. 2019; 11(16):1932. https://doi.org/10.3390/rs11161932
Chicago/Turabian StylePrudnikova, Elena, Igor Savin, Gretelerika Vindeker, Praskovia Grubina, Ekaterina Shishkonakova, and David Sharychev. 2019. "Influence of Soil Background on Spectral Reflectance of Winter Wheat Crop Canopy" Remote Sensing 11, no. 16: 1932. https://doi.org/10.3390/rs11161932
APA StylePrudnikova, E., Savin, I., Vindeker, G., Grubina, P., Shishkonakova, E., & Sharychev, D. (2019). Influence of Soil Background on Spectral Reflectance of Winter Wheat Crop Canopy. Remote Sensing, 11(16), 1932. https://doi.org/10.3390/rs11161932