LEO Precise Orbit Determination with Inter-satellite Links
Abstract
:1. Introduction
2. ISL Observation Model
3. Simulation and Method
3.1. LEO Constellation Design
3.2. ISL Topology Design
3.3. ISL Observation Simulation
3.4. POD Methods
4. Results and Analyses
4.1. Test with Different Link Topologies
4.2. POD with Center of Gravity Reference
4.3. POD with Reference Provided by Navigation Satellites
5. Discussions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schutz, B.E.; Tapley, B.D.; Abusali, P.A.M.; Rim, H.J. Dynamic orbit determination using GPS measurements from TOPEX/POSEIDON. Geophys. Res. Lett. 1994, 21, 2179–2182. [Google Scholar] [CrossRef]
- Xu, T.; He, K. Geometry orbit determination of GEO satellite attending to systematic errors. J. Geod. Geodyn. 2009, 29, 64–69. (In Chinese) [Google Scholar]
- Wu, B.; Peng, B. GPS Low Earth Orbit Determination-Method and Example. Geodesy and Geodynamic Advancement; Hubei Science & Technology Press: Wuhan, China, 2004. (In Chinese) [Google Scholar]
- Huang, G.; Yan, X.; Zhang, Q.; Liu, C.; Wang, L.; Qin, Z. Estimation of antenna phase center offset for BDS IGSO and MEO satellites. GPS Solut. 2018, 22, 49. [Google Scholar] [CrossRef]
- Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A. Code’s new solar radiation pressure model for GNSS orbit determination. J. Geod. 2015, 89, 775–791. [Google Scholar] [CrossRef]
- Menn, M.D.; Bemstein, H. Ephemeris observability issues in the global positioning system (GPS) autonomous navigation (AUTONAV). In Proceedings of the 1994 IEEE Position, Location and Navigation Symposium (PLANS’94), Las Vegas, NV, USA, 11–15 April 1994; pp. 677–680. [Google Scholar]
- Rajan, J.; Brodie, P.; Rawicz, H. Modernizing GPS autonomous navigation with anchor capability. In Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, USA, 9–12 September 2003; pp. 1534–1542. [Google Scholar]
- Rajan, J.; Orr, M.; Wang, P. On-orbit validation of GPS IIR autonomous navigation. In Proceedings of the 59th Annual Meeting of the Institute of Navigation and CIGTF 22nd Guidance Test Symposium, Albuquerque, New Mexico, 23–25 June 2003; pp. 411–419. [Google Scholar]
- Yang, N.; Chen, L. ISL Analysis of Navigation Satellite System. GNSS World China 2007, 32, 17–20. (In Chinese) [Google Scholar]
- Lin, Y.; He, S.; Zheng, J.; Chun, H. Development recommendation of inter-satellites links in GNSS. Spacecr. Eng. 2010, 19, 1–7. (In Chinese) [Google Scholar]
- Palmerini, G.B.; Sabatini, M.; Gasbarri, P.; Schirone, L.; Macellari, M. Moderate accuracy relative navigation in formation flying by filtered radio measurements. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015. [Google Scholar]
- Sheard, B.S.; Heinzel, G.; Danzmann, K.; Shaddock, D.A.; Klipstein, W.M.; Folkner, W.M. Intersatellite laser ranging instrument for the GRACE follow-on mission. J. Geod. 2012, 86, 1083–1095. [Google Scholar] [CrossRef]
- Maine, K.P.; Anderson, P.; Langer, J. Crosslinks for next generation GPS. In Proceedings of the 2003 IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 8–15 March 2003; pp. 1589–1595. [Google Scholar] [CrossRef]
- Ananda, M.P.; Bernstein, H.; Cunningham, K.E.; Feess, W.A.; Stroud, E.G. Global positioning system (GPS) autonomous navigation. In Proceedings of the IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences, Las Vegas, NV, USA, 20–20 March 1990; pp. 497–508. [Google Scholar]
- Luba, O.; Boyd, L.; Gower, A.; Crum, J. GPS III system operations concepts. IEEE Aerosp. Electron. Syst. Mag. 2005, 20, 10–18. [Google Scholar] [CrossRef]
- Rajan, J.A. Highlights of GPS II-R autonomous navigation. In Proceedings of the 58th Annual Meeting of the Institute of Navigation and CIGTF 21st Guidance Test Symposium, Albuquerque, NM, USA, 24–26 June 2002; pp. 354–363. [Google Scholar]
- Zhu, J. Research on Orbit Determination and Time Synchronizing of Navigation Satellite Based on Crosslinks. Research; National University of Defense Technology: Changsha, China, 2011. [Google Scholar]
- Gruss, M. Launch of First GPS 3 Satellite Now Not Expected until 2017. Available online: https://spacenews.com/launch-of-first-gps-3-satellite-now-not-expected-until-2017/ (accessed on 24 February 2015).
- Fernández, F.A. Inter-satellite ranging and inter-satellite communication links for enhancing GNSS satellite broadcast navigation data. Adv. Space Res. 2011, 47, 786–801. [Google Scholar] [CrossRef]
- Li, L.; Geng, G.; Li, Z. Study of the Development of the Inter-Satellite Links in Foreign GNSS. J. Geomat. Sci. Technol. 2016, 33, 133–138. (In Chinese) [Google Scholar]
- Gerlin, F.; Laurenti, N.; Naletto, G.; Vallone, G.; Villoresi, P.; Bonino, L.; Mottini, S.; Sodnik, Z. Design optimization for quantum communications in a GNSS intersatellite network. In Proceedings of the 2013 International Conference on Localization and GNSS (ICL-GNSS), Turin, Italy, 25–27 June 2013. [Google Scholar]
- Meng, Y.N.; Fan, S.W.; Yang, Q.W. Feasibility study on the use of satellite links between GNSS high-orbit spacecraft orbit determination. Spacecr. Eng. 2015, 2015, 31–37. [Google Scholar]
- Ignatovich, E.I.; Schekutje, A.F. Results of Imitating Tests of Some Versions of Onboard Algorithms for SC GLONASS Inter-Satellite Measurement Processing. In Proceedings of the 15th Saint Petersburg International Conference on Integrated Navigation Systems, Saint Petersburg, Russia, 26–28 May 2008; pp. 348–355. [Google Scholar]
- Yang, D.; Yang, J.; Li, G.; Zhou, Y.; Tang, C. Globalization highlight: Orbit determination using BeiDou inter-satellite ranging measurements. GPS Solut. 2017, 21, 1395–1404. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, X.; Zhou, S.; Song, X.; Huang, Y.; Mao, Y.; Huang, C.; Chang, Z.; Wu, S. A new autonomous orbit determination algorithm based on inter-satellite ranging measurements. Sci. Sin. Phys. Mech. Astron. 2015, 45, 079511. (In Chinese) [Google Scholar]
- Feng, L.; Mao, Y.; Song, X.; Sun, B. Analysis of the accuracy of Beidou combined orbit determination enhanced by LEO and ISL. Acta Geod. et. Cartogr. Sin. 2016, 45, 109–115. (In Chinese) [Google Scholar]
- Ren, X.; Yang, Y.; Zhu, J.; Xu, T. Orbit determination of the next-generation BeiDou satellites with inter-satellite link measurements and a priori orbit constraints. Adv. Space Res. 2017, 60, 2155–2165. [Google Scholar] [CrossRef]
- Tang, C.; Hu, X.; Zhou, S.; Liu, L.; Pan, J.; Chen, L.; Guo, R.; Zhu, L.; Hu, G.; Li, X.; et al. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements. J. Geod. 2016, 92, 1155–1169. [Google Scholar] [CrossRef]
- Xie, X.; Geng, T.; Zhao, Q.; Cai, H.; Zhang, F.; Wang, X.; Meng, Y. Precise orbit determination for BDS-3 satellites using satellite-ground and inter-satellite link observations. GPS Solut. 2019, 23, 40. [Google Scholar] [CrossRef]
- Zhu, S.; Reigber, C.; Konig, R. Integrated adjustment of CHAMP, GRACE, and GPS data. J. Geod. 2004, 78, 103–108. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Zhang, Q.; Zhang, W.; Yuan, Y.; Li, X. Integrated orbit determination of FengYun-3C, BDS, and GPS satellites. J. Geophys. Res. Solid Earth. 2018, 123, 8143–8160. [Google Scholar] [CrossRef]
- Geng, J.; Shi, C.; Zhao, Q.; Ge, M.; Liu, J. Integrated adjustment of LEO and GPS in precision orbit determination. In Proceedings of the VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, Berlin, Germany, 29 May–2 June 2006. [Google Scholar] [CrossRef]
- Li, X.; Ma, F.; Li, X.; Lv, H.; Bian, L.; Jiang, Z.; Zhang, X. LEO constellation-augmented multi-GNSS for rapid PPP convergence. J. Geod. 2019, 93, 749–764. [Google Scholar] [CrossRef]
- WWW.CCTV.COM. Available online: https://news.cctv.com/2018/12/30/ARTIgKeCAi4dbwr6vlerg25U181230.shtml (accessed on 30 December 2018).
- Song, X.; Mao, Y.; Feng, L.; Jia, X.; Ji, J. The preliminary result and analysis for BD orbit determination with inter-satellite link data. Acta Geod. et. Cartogr. Sin. 2017, 46, 547–553. (In Chinese) [Google Scholar]
- Wang, H.; Xie, J.; Zhuang, J.; Wang, Z. Performance analysis and progress of inter-satellite-link of Beidou system. In Proceedings of the 30th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2017), Portland, Oregon, 25–29 September 2017; pp. 1178–1185. [Google Scholar] [CrossRef]
- Guo, R.; Hu, X.; Tang, B.; Huang, Y.; Liu, L.; Cheng, L.; He, F. Precise orbit determination for geostationary satellites with multiple tracking techniques. Chin. Sci. Bull. 2010, 55, 687–692. [Google Scholar] [CrossRef]
- Han, S.; Gui, Q.; Li, J.; Po, C.; Du, Y. Analysis of the routing algorithm and using probability of inter-satellite link in walker-δ constellation. Lect. Notes Electr. Eng. 2012, 161, 333–341. [Google Scholar]
- Keller, H.; Salzwedel, H. Link strategy for the mobile satellite system iridium. In Proceedings of the Vehicular Technology Conference-VTC, Atlanta, GA, USA, 28 April–1 May 1996; pp. 1220–1224. [Google Scholar]
- Mao, Y.; Song, X.; Jia, X.; Wu, X. Naturalisation method research on inter-satellite link observation data. Geomat. Inf. Sci. Wuhan Univ. 2013, 38, 1201–1206. (In Chinese) [Google Scholar]
- Zhu, J.; Wen, Y.; Chen, Z.; Liao, Y.; Pan, W. Research on modeling and simulation of semi-autonomous orbit determination for satellite navigation constellation. In Proceedings of the 2008 Asia Simulation Conference—7th International Conference on System Simulation and Scientific Computing, Beijing, China, 10–12 October 2008; pp. 252–257. [Google Scholar]
- Fan, B.; Li, G.; Li, P.; Yi, W.; Yang, Z.; Yang, Z. Adjustment of a Laser Interferometer 3D Rank-defect Free-network. Geomat. Inf. Sci. Wuhan Univ. 2015, 40, 222–232. (In Chinese) [Google Scholar]
- Chen, J.; Jiao, W.; Ma, J. Autonav of navigation satellite constellation based on crosslink range and orientation parameters constraining. Geomat. Inf. Sci. Wuhan Univ. 2005, 30, 439–443. (In Chinese) [Google Scholar]
- Ma, K.; Peng, B.; Hong, Y. LEO satellite ephemeris parameters fitting method based on orbit character of satellite. J. Geod. Geodyn. 2007, 27, 85–90. (In Chinese) [Google Scholar]
- Liu, Q.; Liu, F.; Ju, T. Ephemeris Parameters Fitting Method for Low Eccentricity LEO Satellite. Spacecr. Eng. 2010, 19, 17–22. (In Chinese) [Google Scholar]
Orbit | LEO | LEO | LEO |
---|---|---|---|
Satellite number | 60 | 120 | 192 |
Constellation | 10 planes | 10 planes | 12 planes |
Orbit type | Polar | Polar | Polar |
Inclination [deg] | 90 | 90 | 90 |
Altitude [km] | 1000 | 1000 | 1000 |
Errors | 3D/m | |||
---|---|---|---|---|
4-connected | 0.095 | 0.045 | 0.038 | 0.112 |
all-connected | 0.052 | 0.002 | 0.045 | 0.069 |
Direction | Ranging Accuracy | ||
---|---|---|---|
40 cm | 20 cm | 10 cm | |
Radial [m] | 0.179 | 0.043 | 0.011 |
Along-track [m] | 0.084 | 0.020 | 0.005 |
Cross-track [m] | 0.272 | 0.065 | 0.016 |
3D [m] | 0.358 | 0.086 | 0.022 |
Constellation | Ranging Residuals/m | Numbers of Links | |
---|---|---|---|
Without RAAN Constraint | With RAAN Constraint | ||
120-LEO | 0.344 | 0.110 | 1982 |
192-LEO | 0.625 | 0.321 | 4942 |
Constellation | Orbital Errors/m | |||
---|---|---|---|---|
Radial | Along-Track | Cross-Track | 3D | |
120-LEO | 0.005 | 0.002 | 0.008 | 0.010 |
192-LEO | 0.003 | 0.001 | 0.005 | 0.006 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Jiang, Z.; Ma, F.; Lv, H.; Yuan, Y.; Li, X. LEO Precise Orbit Determination with Inter-satellite Links. Remote Sens. 2019, 11, 2117. https://doi.org/10.3390/rs11182117
Li X, Jiang Z, Ma F, Lv H, Yuan Y, Li X. LEO Precise Orbit Determination with Inter-satellite Links. Remote Sensing. 2019; 11(18):2117. https://doi.org/10.3390/rs11182117
Chicago/Turabian StyleLi, Xingxing, Zihao Jiang, Fujian Ma, Hongbo Lv, Yongqiang Yuan, and Xin Li. 2019. "LEO Precise Orbit Determination with Inter-satellite Links" Remote Sensing 11, no. 18: 2117. https://doi.org/10.3390/rs11182117
APA StyleLi, X., Jiang, Z., Ma, F., Lv, H., Yuan, Y., & Li, X. (2019). LEO Precise Orbit Determination with Inter-satellite Links. Remote Sensing, 11(18), 2117. https://doi.org/10.3390/rs11182117