Concept Development and Risk Reduction for MISTiC Winds, A Micro-Satellite Constellation Approach for Vertically Resolved Wind and IR Sounding Observations in the Troposphere
Abstract
:1. Introduction
1.1. Overview
1.2. Historical Background for IR Sounding and Atmospheric Motion Vector Winds
2. Materials and Methods
2.1. MISTiC Winds Observing Concept, Requirements, and MISTiC Instrument Concept
2.2. MISTiC Instrument Design and Sensitivity Performance
2.3. Constellation, and Launch Considerations
3. Results
MISTiC Airborne Instrument Observations from the NASA ER2
4. Discussion
4.1. Discussion of MISTiC Winds Requirements and Their Relation to Other Instrument Requirements
4.2. Significance of MISTiC Winds for Weather Research
4.3. Differences in Observed Spectral Resolving Power for the Airborne and Laboratory cases
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
A1. Radiation Testing of the Avalanche Photodiode Array and Readout IC
Total Ionizing Dose (krad(Si)) | Median Pixel Dark Current (A) |
---|---|
Pre-Rad | 1.3 × 10−15 |
1 | 1.26 × 10−15 |
5 | 1.82 × 10−15 |
15 | 3.5 × 10−15 |
25 | 6.3 × 10−15 |
35 | 8.0 × 10−15 |
70 | 16.0 × 10−15 |
A2. Spectrometer Fabrication, Integration, and Key Ground-based Performances Tests
A3. Airborne Instrumentation Integration and Spectrometer Characterization
Appendix B
B.1. Flight Path for a MISTiC Observation Demonstration Flight on 4 December 2017
B2. The “Orbit”-the Approach to Repeat-Pass Imaging
B3. Notes on the Weather for 4 December ’17 Flight
B4. Approach to 2D Wind Vector Identification for MISTiC Airborne Observations
B5. Observation Demonstration Flight on 4 December 2017
B6. MISTiC Airborne Observation Comparison with IASI over Ocean
References
- Kidder, S.Q.; Vonder Haar, T.H. Satellite Meteorology: An Introduction; Academic Press: Cambridge, MA, USA, 1995; pp. 233–244. [Google Scholar]
- AIRS Atmospheric Infrared Sounder. Available online: https://airs.jpl.nasa.gov/weather_and_climate_sciences/findings (accessed on 5 September 2019).
- Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. Available online: http://nap.edu/24938 (accessed on 5 September 2019).
- Baker, W.E.; Emmit, G.D.; Robertson, F.; Atlas, R.M.; Molinari, J.E.; Bowdle, D.A.; Paegle, J.; Hardesty, R.M.; Menzies, R.T.; Krishnamurti, T.N.; et al. Lidar-measured winds from space: A key component for weather and climate prediction. Bull. Am. Meteorol. Soc. 1995, 76, 869–888. [Google Scholar] [CrossRef]
- AMV-World Meteorological Organization. Available online: https://www.wmo.int/pages/prog/www/OSY/Meetings/NWP5_Sedona2012/3c5_Daniels.pdf (accessed on 5 September 2019).
- Winds of Change in the Use of Atmospheric Motion Vectors in the ECMWF System. Available online: https://www.ecmwf.int/sites/default/files/elibrary/2013/17363-winds-change-use-atmospheric-motion-vectors-ecmwf-system.pdf (accessed on 5 September 2019).
- GIFTS: A New Way to Observe Weather in the Changing Atmosphere. Available online: https://www.nasa.gov/centers/langley/news/factsheets/GIFTS.html (accessed on 5 September 2019).
- Europe Launches ‘Aeolus’ Satellite on Mission to Map Earth’s Winds. Available online: https://www.space.com/41587-vega-rocket-launches-aeolus-wind-satellite.html (accessed on 5 September 2019).
- Maschhoff, K.R.; Polizotti, J.J.; Aumann, H.H.; Susskind, J. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements. Proc. SPIE 2016. [Google Scholar] [CrossRef]
- MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Wind Measurements. Available online: http://cimss.ssec.wisc.edu/iwwg/iww13/proceedings_iww13/papers/session7/IWW13_Session7_5_Maschhoff_final.pdf (accessed on 5 September 2019).
- MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements: An Update. Available online: http://cimss.ssec.wisc.edu/iwwg/iww14/talks/04_Thursday/1120_IWW14_MISTiC_Maschhoff.pdf (accessed on 5 September 2019).
- Kaplan, L.D. Inference of atmospheric structures from satellite remote radiation measurements. J. Opt. Soc. Am. 1959, 49, 1004–2007. [Google Scholar] [CrossRef]
- Aumann, H.H.; Chahine, M.T.; Gautier, C.; Goldberg, M.D.; Kalnay, E.; McMillin, L.M.; Revercomb, H.; Rosenkranz, P.W.; Smith, W.L.; Staelin, D.H.; et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens. 2003, 41, 253–264. [Google Scholar] [CrossRef]
- Le Marshall, J.; Jung, J.; Derber, J.; Chahine, M.; Treadon, R.; Lord, S.J.; Goldberg, M.; Wolfe, W.; Liu, H.C.; Joiner, J.; et al. Improving Global Analysis and Forecasting with AIRS. Bull. Am. Meteorol. Soc. 2006, 87, 891–894. [Google Scholar] [CrossRef]
- McNally, A.P.; Watts, P.D.; Smith, J.A.; Engelen, R.; Kelly, G.A.; Thepaut, J.N.; Matricardi, M. The Assimilation of AIRS radiance data at ECMWF. QJR Meteorol. Soc. 2006, 132, 935–957. [Google Scholar] [CrossRef]
- Chahine, M.T.; Pagano, T.S.; Aumann, H.H.; Atlas, R.M.; Barnet, C.; Blaisdell, J.; Chen, L.; Divakarla, M.; Fetzer, E.J.; Goldberg, M.; et al. The Atmospheric Infrared Sounder (AIRS): Improving weather forecasting and providing new data on greenhouse gases. Bull. Am. Meteorol. Soc. 2006, 87, 911–926. [Google Scholar] [CrossRef]
- Jedlovec, G.J.; Atkinson, R.J. The Marshall Automated Wind algorithm: Error analysis, quality control and climate applications. In Proceedings of the Fourth International Winds Workshop, Huntsville, AL, USA, 1998; pp. 247–254. Available online: https://bit.ly/2lUAeBY (accessed on 18 September 2019).
- Introducing Atmospheric Motion Vectors Derived from the GOES-16 Advanced Baseline Imager (ABI). Available online: http://cimss.ssec.wisc.edu/iwwg/iww14/talks/01_Monday/1400_IWW14_ABI_AMVs_Daniels.pdf (accessed on 5 September 2019).
- Atlas, R.M. Personal Communication.
- Velden, C.S.; Dengel, G.; Dengel, R.; Stettner, D. Determination of wind vectors by tracking features on sequential moisture analyses derived from hyperspectral IR soundings. In Proceedings of the Seventh International Winds Workshop, Helsinki, Finland, 14–17 June 2004. [Google Scholar]
- Borde, R.; Hautecoer, O.; Heas, P. Atmospheric Motion Vector Generation from MTG-IRS. In Proceedings of the Assimilation of Hyperspectral Geostationary Satellite Observations Workshop, ECMWF, Reading, UK, 22–25 May 2017. [Google Scholar]
- A Blog Description of the HES Program and Its Ultimate Fate. Available online: http://rammb.cira.colostate.edu/training/visit/blog/index.php/tag/hyperspectral-environmental-suite/Ablog description of the HES program and its ultimate fate (accessed on 22 October 2013).
- An OSSE Investigating a Constellation of 4–5 μm Infrared Sounders. Available online: https://cimss.ssec.wisc.edu/itwg/itsc/itsc21/program/4december/1400_15.04_McCarty-MISTiC_for_ITSC.pdf (accessed on 5 September 2019).
- Santek, D.; Nebuda, S.; Stettner, D. Feature-tracked Winds from Moisture Fields Derived from AIRS Sounding Retrievals. In Proceedings of the 12th International Winds Workshop, Copenhagen, Denmark, 16–20 June 2014. [Google Scholar]
- Susskind, J.; Blaisdell, J.; Iredell, L. Significant Advances in the AIRS Science Team Version-6 Retrieval Algorithm. Proc. SPIE 2012. [Google Scholar] [CrossRef]
- Tobin, D.C.; Revercomb, H.E.; Knuteson, R.O.; Best, F.A.; Smith, W.L.; Ciganovich, N.N.; Howell, H.B. Radiometric and spectral validation of Atmospheric Infrared Sounder observations with the aircraft-based Scanning High-Resolution Interferometer Sounder. J. Geophys. Res. Atmos. 2006, 111, D9. [Google Scholar] [CrossRef]
- Observing System Capabilities Analysis and Review Tool, Observation Requirements. Available online: https://www.wmo-sat.info/oscar/applicationareas/view/2 (accessed on 5 September 2019).
- Weather Focus Area Workshop Report (2015). Available online: http://science.nasa.gov/earth-science/focus-areas/earth-weather. (accessed on 5 September 2019).
- Baker, E.E.; Atlas, R.; Cardinali, C.; Clement, A.; Emmitt, G.D.; Gentry, B.M.; Hardesty, R.M.; Källén, E.; Kavaya, M.J.; Langland, R.; et al. LIDAR-Measured Wind Profiles: The Missing Link in the Global Observing Systems. Bull. Am. Meteorol. Soc. 2014, 95, 543–564. [Google Scholar] [CrossRef]
- Menzel, W.P. Personal Communication.
- Beck, J.; Scritchfield, R.; Goodwin, M.; Wood, L.; Ohlson, M.; Skokan, M.; Kinch, M.; Mitra, P.; Wan, C.-F.; Robinson, J.; et al. Performance and Modeling of the MWIR HgCdTe e-APD. J. Electron. Mater. 2009, 38, 1579. [Google Scholar] [CrossRef]
MISTiC Key Instrument Performance Requirements | ||
---|---|---|
Instrument Characteristic | Value | Comments |
Minimum Spectral Frequency | 1750 cm−1 | 5.72 μm |
Maximum Spectral Frequency | 2450 cm−1 | 4.082 μm |
Spectral Sampling | ~2:1 | ~580 spectral samples |
Spectral Resolving Power | > 700:1 | ν/δν (similar to CrIS-Apodized) |
Spectral Calibration Knowledge | 1/100,000 | δλ/λ |
Angular Sampling (Spatial Sampling) | 0.0016 radians x 0.0016 radians | 1.38 km (@ Nadir) |
Orbital Altitude and Orbit Type | 705.3 km | Polar/Sun-Synchronous |
Angular Range (cross-track) | 1.570 radians | 90 Degrees—Same as AIRS |
Spatial Resolution | <3.0 km (geometric mean) | @ Nadir |
Radiometric Sensitivity | <200 mK (Ref 250 K scene) | (<150 mK @ 2380 cm−1) |
Radiometric Accuracy | <1% | @ 300 K Scene Background |
MISTiC Winds Key Observation Requirements | Value | |
---|---|---|
Vertically Resolved Motion Vector Winds (Water Vapor and Cloud Motion Vectors) | Layer Wind Speed Uncertainty | <2 m/s rms (Lower Troposphere) <3 m/s (High Troposphere) |
Layer Wind Direction Uncertainty (above 10 m/s) | <10 degrees rms | |
Layer Height Pressure Height Assignment Accuracy | <30 hPa rms (assuming 850–200 hPa wind shear <20 m/s) | |
Layer Effective Vertical Thickness | <100 hPa (FWHM) | |
Minimum Pressure Height of Highest Level | 350 hPa (WV)/500 hPa (C) | |
Tracer Potential Density (Cloud-Free Conditions for Water Vapor Motion Vector, Cloud Contrast for Cloud Motion Vector) | >1 per 6 km2 per vertical layer (Water Vapor-nadir) >1 per 150 km2 per layer (Cloud AMVs @ nadir) | |
Temperature Vertical Profile | Layer Effective Vertical Thickness | >100 hPa (~1 km) |
Layer Temperature Accuracy | <1 .25 K (Lower Troposphere) | |
Layer Water Vapor Concentration Accuracy | <15% (Lower Troposphere) | |
Sounding Measurement Potential Density | >1 per 6 km2 | |
Observation Frequency | Observation Refresh Period | <6 h (two planes, each with three instruments) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maschhoff, K.; Polizotti, J.; Aumann, H.; Susskind, J.; Bowler, D.; Gittins, C.; Janelle, M.; Fingerman, S. Concept Development and Risk Reduction for MISTiC Winds, A Micro-Satellite Constellation Approach for Vertically Resolved Wind and IR Sounding Observations in the Troposphere. Remote Sens. 2019, 11, 2169. https://doi.org/10.3390/rs11182169
Maschhoff K, Polizotti J, Aumann H, Susskind J, Bowler D, Gittins C, Janelle M, Fingerman S. Concept Development and Risk Reduction for MISTiC Winds, A Micro-Satellite Constellation Approach for Vertically Resolved Wind and IR Sounding Observations in the Troposphere. Remote Sensing. 2019; 11(18):2169. https://doi.org/10.3390/rs11182169
Chicago/Turabian StyleMaschhoff, Kevin, John Polizotti, Hartmut Aumann, Joel Susskind, Dennis Bowler, Christopher Gittins, Mark Janelle, and Samuel Fingerman. 2019. "Concept Development and Risk Reduction for MISTiC Winds, A Micro-Satellite Constellation Approach for Vertically Resolved Wind and IR Sounding Observations in the Troposphere" Remote Sensing 11, no. 18: 2169. https://doi.org/10.3390/rs11182169
APA StyleMaschhoff, K., Polizotti, J., Aumann, H., Susskind, J., Bowler, D., Gittins, C., Janelle, M., & Fingerman, S. (2019). Concept Development and Risk Reduction for MISTiC Winds, A Micro-Satellite Constellation Approach for Vertically Resolved Wind and IR Sounding Observations in the Troposphere. Remote Sensing, 11(18), 2169. https://doi.org/10.3390/rs11182169