The Impact of the Radar-Sampling Volume on Multiwavelength Spaceborne Radar Measurements Using Airborne Radar Observations
Abstract
:1. Introduction
2. Observations and Applied Data Post-Processing
3. Methods
3.1. Simulation of Spaceborne Sampling Volumes from Field Campaign Data
3.2. Estimation of the Dual-Wavelength Ratios
3.3. Microphysical Properties Retrieval
4. Uncertainty and Biases in Microphysical Retrievals
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leinonen, J.; Lebsock, M.D.; Tanelli, S.; Suzuki, K.; Yashiro, H.; Miyamoto, Y. Performance assessment of a triple-frequency spaceborne cloud-precipitation radar concept using a global cloud-resolving model. AMT 2015, 8, 3493–3517. [Google Scholar] [CrossRef]
- Battaglia, A.; Tanelli, S.; Tridon, F.; Kneifel, S.; Leinonen, J.; Kollias, P. Satellite Precipitation Measurement; Chapter Triple-Frequency Radar Retrievals; Springer: Berlin, Germany, 2019; in press. [Google Scholar]
- Kollias, P.; Bharadwaj, N.; Widener, K.; Jo, I.; Johnson, K. Scanning ARM Cloud Radars. Part I: Operational Sampling Strategies. J. Atmos. Ocean. Technol. 2014, 31, 569–582. [Google Scholar] [CrossRef]
- Kollias, P.; Jo, I.; Borque, P.; Tatarevic, A.; Lamer, K.; Bharadwaj, N.; Widener, K.; Johnson, K.; Clothiaux, E.E. Scanning ARM Cloud Radars. Part II: Data Quality Control and Processing. J. Atmos. Ocean. Technol. 2014, 31, 583–598. [Google Scholar] [CrossRef] [Green Version]
- Casella, D.; Panegrossi, G.; Sanò, P.; Marra, A.C.; Dietrich, S.; Johnson, B.T.; Kulie, M.S. Evaluation of the GPM-DPR snowfall detection capability: Comparison with CloudSat-CPR. Atmos. Res. 2017, 197, 64–75. [Google Scholar] [CrossRef]
- Battaglia, A.; Mroz, K.; Lang, T.; Tridon, F.; Tanelli, S.; Heymsfield, G.; Tian, L. Using a multi-wavelength suite of microwave instruments to investigate the microphysical structure of deep convective cores. J. Geophys. Res. Atmos. 2016. [Google Scholar] [CrossRef] [PubMed]
- Tridon, F.; Battaglia, A.; Luke, E.; Kollias, P. Rain retrieval from dual-frequency radar Doppler spectra: Validation and potential for a midlatitude precipitating case-study. Q. J. R. Meteorol. Soc. 2017, 143, 1364–1380. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Haddock, T.F.; East, J.; Liepa, V. Millimeter-wave network analyzer-based scatterometer. In IGARSS ’86: Remote Sensing: Today’s Solutions for Tomorrow’s Information Needs; IEEE: Piscataway, NJ, USA, 1986. [Google Scholar]
- Lhermitte, R. Attenuation and Scattering of Millimeter Wavelength Radiation by Clouds and Precipitation. J. Atmos. Ocean. Technol. 1990, 7, 464–479. [Google Scholar] [CrossRef] [Green Version]
- Kollias, P.; Clothiaux, E.E.; Miller, M.A.; Albrecht, B.A.; Stephens, G.L.; Ackerman, T.P. Millimeter- Wavelength Radars: New Frontier in Atmospheric Cloud and Precipitation Research. Bull. Am. Meteorol. Soc. 2007, 88, 1608. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley: Hoboken, NJ, USA, 1983; p. 530. [Google Scholar]
- Hogan, R.J.; Kew, S.F. A 3D stochastic cloud model for investigating the radiative properties of inhomogeneous cirrus clouds. Q. J. R. Meteorol. Soc. 2005, 131, 2585–2608. [Google Scholar] [CrossRef] [Green Version]
- Matrosov, S.Y.; Heymsfield, A.J.; Wang, Z. Dual-frequency radar ratio of nonspherical atmospheric hydrometeors. Geophys. Res. Lett. 2005, 32, L13816. [Google Scholar] [CrossRef]
- Ellis, S.M.; Vivekanandan, J. Liquid water content estimates using simultaneous S and Ka band radar measurements. Radio Sci. 2011, 46, RS2021. [Google Scholar] [CrossRef]
- Kneifel, S.; Lerber, A.; Tiira, J.; Moisseev, D.; Kollias, P.; Leinonen, J. Observed relations between snowfall microphysics and triple-frequency radar measurements. J. Geophys. Res. Atmos. 2015, 120, 6034–6055. [Google Scholar] [CrossRef] [Green Version]
- Tridon, F.; Battaglia, A. Dual-frequency radar Doppler spectral retrieval of rain drop size distributions and entangled dynamics variables. J. Geophys. Res. Atmos. 2015, 120, 5585–5601. [Google Scholar] [CrossRef]
- Leinonen, J.; Lebsock, M.D.; Tanelli, S.; Sy, O.O.; Dolan, B.; Chase, R.J.; Finlon, J.A.; von Lerber, A.; Moisseev, D. Retrieval of snowflake microphysical properties from multifrequency radar observations. Atmos. Meas. Tech. 2018, 11, 5471–5488. [Google Scholar] [CrossRef] [Green Version]
- Kozu, T.; Iguchi, T. Nonuniform Beamfilling Correction for Spaceborne Radar Rainfall Measurement: Implications from TOGA COARE Radar Data Analysis. J. Atmos. Ocean. Technol. 1999, 16, 1722. [Google Scholar] [CrossRef]
- Durden, S.L.; Tanelli, S. Predicted Effects of Nonuniform Beam Filling on GPM Radar Data. IEEE Geosci. Remote Sens. Lett. 2008, 5, 308–310. [Google Scholar] [CrossRef]
- Short, D.; Nakagawa, K.; Iguchi, T. Reduction of Nonuniform Beam Filling Effects by Vertical Decorrelation: Theory and Simulations. J. Meteorol. Soc. Jpn. Ser. II 2013, 91, 539–543. [Google Scholar] [CrossRef] [Green Version]
- Mroz, K.; Battaglia, A.; Lang, T.J.; Tanelli, S.; Sacco, G.F. Global Precipitation Measuring Dual-Frequency Precipitation Radar Observations of Hailstorm Vertical Structure: Current Capabilities and Drawbacks. J. Appl. Meteorol. Climatol. 2018, 57, 2161–2178. [Google Scholar] [CrossRef]
- Tanelli, S.; Haddad, Z.S.; Im, E.; Durden, S.L.; Sy, O.O.; Peral, E.; Sadowy, G.A.; Sanchez-Barbetty, M. Radar concepts for the next generation of spacebome observations of cloud and precipitation processes. In Proceedings of the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 1245–1249. [Google Scholar] [CrossRef]
- Tanelli, S.; Im, E.; Durden, S.L.; Facheris, L.; Giuli, D. The Effects of Nonuniform Beam Filling on Vertical Rainfall Velocity Measurements with a Spaceborne Doppler Radar. J. Atmos. Ocean. Technol. 2002, 19, 1019–1034. [Google Scholar] [CrossRef]
- Tokay, A.; D’Adderio, L.P.; Porcù, F.; Wolff, D.B.; Petersen, W.A. A Field Study of Footprint-Scale Variability of Raindrop Size Distribution. J. Hydrometeorol. 2017, 18, 3165–3179. [Google Scholar] [CrossRef]
- Hogan, R.J.; Illingworth, A.J. The Potential of Spaceborne Dual-Wavelength Radar to Make Global Measurements of Cirrus Clouds. J. Atmos. Ocean. Technol. 1999, 16, 518–531. [Google Scholar] [CrossRef]
- Battaglia, A.; Tanelli, S.; Heymsfield, G.; Tian, L. The Dual Wavelength Ratio knee: A signature of multiple scattering in airborne Ku-Ka observations. J. Appl. Meteorol. Climatol. 2014, 53, 1790–1808. [Google Scholar] [CrossRef]
- Houze, R.A., Jr.; McMurdie, L.A.; Petersen, W.A.; Schwaller, M.R.; Baccus, W.; Lundquist, J.D.; Mass, C.F.; Nijssen, B.; Rutledge, S.A.; Hudak, D.R.; et al. The Olympic Mountains Experiment (OLYMPEX). Bull. Am. Meteorol. Soc. 2017, 98, 2167–2188. [Google Scholar] [CrossRef] [PubMed]
- Tridon, F.; Battaglia, A.; Chase, R.J.; Turk, F.J.; Leinonen, J.; Kneifel, S.; Mroz, K.; Finlon, J.; Bansemer, A.; Tanelli, S.; et al. The microphysics of stratiform precipitation during OLYMPEX: Compatibility between 3-frequency radar and airborne in situ observations. J. Geophys. Res. Atmos. 2019, 124, 8764–8792. [Google Scholar] [CrossRef]
- Durden, S.L.; Tanelli, S. GPM Ground Validation Airborne Precipitation Radar 3rd Generation (APR-3) OLYMPEX V2 [Indicate Subset Used]. Dataset Available Onlinefrom the NASA EOSDIS Global Hydrology Resource Center Distributed Active Archive Center, Huntsville; NASA Global Hydrology Resource Center DAAC: Huntsville, AL, USA, 2008. [CrossRef]
- Li, H.; Tang, J.; Peng, Y. Modeling and analysis of characteristics of clutter for hybrid bistatic space-based radar. In Proceedings of the International Conference on Space Information Technology, Wuhan, China, 4 January 2006; pp. 16–20. [Google Scholar] [CrossRef]
- Kollias, P.; Albrecht, B. Why the melting layer radar reflectivity is not bright at 94 GHz. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Roe, G.H. Orographic Precipitation. Annu. Rev. Earth Planet. Sci. 2005, 33, 645–671. [Google Scholar] [CrossRef]
- Mason, S.L.; Hogan, R.J.; Westbrook, C.D.; Kneifel, S.; Moisseev, D.; von Terzi, L. The importance of particle size distribution and internal structure for triple-frequency radar retrievals of the morphology of snow. Atmos. Meas. Tech. 2019, 2019, 4993–5018. [Google Scholar] [CrossRef]
- Barrett, A.I.; Westbrook, C.D.; Nicol, J.C.; Stein, T.H.M. Rapid ice aggregation process revealed through triple-wavelength Doppler spectrum radar analysis. Atmos. Chem. Phys. 2019, 19, 5753–5769. [Google Scholar] [CrossRef] [Green Version]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- The Decadal Survey (Ed.) Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space; The National Academies Press: Washington, DC, USA, 2017. [Google Scholar]
- Joe, P.; Kidd, C.; Kollias, P.; Tanelli, S.; Moisseev, D.; Battaglia, A.; Koikinen, J.; Arbery, G.; Deligny, B.; Caubet, E.; et al. The Polar Precipitation Measurement mission. In Proceedings of the 6th European Conference on Radar Meteorology and Hydrology: Satellite radar measurements and hydro-meteorological applications, Sibiu, Romania, 6–10 September 2010. [Google Scholar]
- Schutgens, N.; Donovan, D. Retrieval of atmospheric reflectivity profiles in case of long radar pulses. Atmos. Res. 2004, 72, 187–196. [Google Scholar] [CrossRef]
- Long, D.; Brodzik, M. Optimum image formation for spaceborne microwave radiometerproducts. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2763–2779. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.; Kollias, P.; Tatarevic, A.; Battaglia, A.; Tanelli, S. The performance of the EarthCARE Cloud Profiling Radar in marine stratiform clouds. J. Geophys. Res. Atmos. 2016, 121, 14. [Google Scholar] [CrossRef]
- Hogan, R.J.; Mittermaier, M.P.; Illingworth, A.J. The Retrieval of Ice Water Content from Radar Reflectivity Factor and Temperature and Its Use in Evaluating a Mesoscale Model. J. Appl. Meteorol. Climatol. 2006, 45, 301–317. [Google Scholar] [CrossRef] [Green Version]
- Leinonen, J.; Moisseev, D.; Nousiainen, T. Linking snowflake microstructure to multi-frequency radar observations. J. Geophys. Res. Atmos. 2013, 118, 3259–3270. [Google Scholar] [CrossRef]
- Hogan, R.J.; Westbrook, C.D. Equation for the Microwave Backscatter Cross Section of Aggregate Snowflakes Using the Self-Similar Rayleigh-Gans Approximation. J. Atmos. Sci. 2014, 71, 3292–3301. [Google Scholar] [CrossRef]
- Leinonen, J.; Kneifel, S.; Hogan, R.J. Evaluation of the Rayleigh-Gans approximation for microwave scattering by rimed snowflakes. Q. J. R. Meteorol. Soc. 2018, 144, 77–88. [Google Scholar] [CrossRef]
- Leinonen, J.; Szyrmer, W. Radar signatures of snowflake riming: A modeling study. Earth Space Sci. 2015, 2, 346–358. [Google Scholar] [CrossRef]
Field Campaign Dataset | ||
---|---|---|
vertical | horizontal | airborne radar dataset |
40 m | 400 m | OLYMPEx data set |
Spaceborne configurations | ||
vertical | horizontal | configuration |
100 m | km | “ideal” configuration |
250 m | km | “near-future” configuration |
250 m | km | “current” configuration |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfitzenmaier, L.; Battaglia, A.; Kollias, P. The Impact of the Radar-Sampling Volume on Multiwavelength Spaceborne Radar Measurements Using Airborne Radar Observations. Remote Sens. 2019, 11, 2263. https://doi.org/10.3390/rs11192263
Pfitzenmaier L, Battaglia A, Kollias P. The Impact of the Radar-Sampling Volume on Multiwavelength Spaceborne Radar Measurements Using Airborne Radar Observations. Remote Sensing. 2019; 11(19):2263. https://doi.org/10.3390/rs11192263
Chicago/Turabian StylePfitzenmaier, Lukas, Alessandro Battaglia, and Pavlos Kollias. 2019. "The Impact of the Radar-Sampling Volume on Multiwavelength Spaceborne Radar Measurements Using Airborne Radar Observations" Remote Sensing 11, no. 19: 2263. https://doi.org/10.3390/rs11192263
APA StylePfitzenmaier, L., Battaglia, A., & Kollias, P. (2019). The Impact of the Radar-Sampling Volume on Multiwavelength Spaceborne Radar Measurements Using Airborne Radar Observations. Remote Sensing, 11(19), 2263. https://doi.org/10.3390/rs11192263