Analysis of Thermal Anomalies in Volcanic Areas Using Multiscale and Multitemporal Monitoring: Vulcano Island Test Case
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. Satellite Data
2.1.1. Processing of L8 Data
- LTOA is the Radiance at the top of the Atmosphere W·m−2·sr−1·µm−1;
- ML is the multiplicative rescaling factor (3.342 × 10−4) for L8 B10 metadata, from the MTL file furnished with the image data;
- Qcal is the quantized and calibrated standard digital pixel number (DN) value;
- AL is the additive rescaling factor (0.1) for L8 B10 metadata, from the MTL file.
- LTOA the radiance received by B10 of the sensor with brightness temperature T10;
- Lλ the radiance from the surface at B10;
- Lu the upwelling atmospheric radiance components (obtained using Modtran [70]);
- Ld the downwelling atmospheric radiance components (obtained using Modtran [70]);
- ε the surface emissivity for B10 extracted by the ASTER 05 emissivity data [74];
- τ the atmospheric transmittance for B10 when the view zenith angle is θ (obtained using Modtran [70]). TIRS is treated as nadir viewing since the view angle is no more than 7.5°.
- T is the surface temperature (°K);
- Lλ is the surface spectral radiance;
- K1 is the Band-specific thermal conversion constant provided in the MTL file;
- K2 is the Band-specific thermal conversion constant provided in the MTL file;
2.1.2. Processing of ASTER Data
2.2. Ground Measurements
2.2.1. Direct Measurements from Continuous Monitoring Stations
2.2.2. Proximal Thermocamera Imaging with Hand-Held IR Camera
2.2.3. Meteorological Data
2.3. Airborne Data
2.4. Statistical Indices
3. Results
3.1. Surface Temperature Retrieved by Satellite Data and Weather Station Time Series
3.2. Ground Field Campaigns
3.2.1. Time Series from Continuous Monitoring Stations
3.2.2. Proximal Yhermocamera Imaging with a Hand-Held IR Camera
3.3. Airborne Campaign
4. Discussion
4.1. Satellite Data Compared with Ground Data
4.2. Satellite Data Compared with Airborne Data
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Inguaggiato, S.; Diliberto, I.S.; Federico, C.; Paonita, A.; Vita, F. Review of the evolution of geochemical monitoring, networks and methodologies applied to the volcanoes of the Aeolian Arc (Italy). Earth-Sci. Rev. 2018, 176, 241–276. [Google Scholar] [CrossRef]
- Sano, Y.; Kagoshima, T.; Takahata, N.; Nishio, Y.; Roulleau, E.; Pinti, D.L.; Fischer, T.P. Ten-year helium anomaly prior to the 2014 Mt Ontake eruption. Sci. Rep. 2015, 5, 13069. [Google Scholar] [CrossRef] [Green Version]
- Ohno, M.; Utsugi, M.; Mori, T.; Kita, I.; Kagiyama, T.; Tanaka, Y. Temporal variation in the chemical composition (HCl/SO2) of volcanic gas associated with the volcanic activity of Aso volcano, Japan. Earth Planets Sp. 2013, 65, e1. [Google Scholar] [CrossRef]
- Liuzzo, M.; Gurrieri, S.; Giudice, G.; Giuffrida, G. Ten years of soil CO2 continuous monitoring on Mt. Etna: Exploring the relationship between processes of soil degassing and volcanic activity. Geochem. Geophys. Geosyst. 2013, 14. [Google Scholar] [CrossRef]
- Aiuppa, A.; Federico, C.; Gaetano, G.; Giovanni, G.; Guida, R.; Gurrieri, S.; Liuzzo, M.; Moretti, R.; Papale, P. The 2007 eruption of Stromboli Volcano: Insights from real-time measurement fo the volcanic gas plume CO2/SO2 ratio. J. Volcanol. Geotherm. Res. 2009, 182, 221–230. [Google Scholar] [CrossRef]
- Montalto, A. Signs of potential renewal of eruptive activity at La Fossa (Vulcano, Aeolian Islands). Bull. Volcanol. 1996, 57, 483–492. [Google Scholar] [CrossRef]
- Italiano, F.; Pecoraino, G. Steam output from fumaroles of an active volcano: Tectonic and magmatic-hydrothermal controls on the degassing system at Vulcano (Aeolian arc). J. Geophys. Res. 1998, 103, 29829–29842. [Google Scholar] [CrossRef] [Green Version]
- Aubert, M.; Alparone, S. Variation d’origine sismique du flux de chaleur convectif dans La Fossa de Vulcano (Italie). C. R. L’Acad. Sci. Ser. IIA Earth Planet. Sci. 2000, 330, 603–610. [Google Scholar] [CrossRef]
- Lowenstern, J.B.; Smith, R.B.; Hill, D.P. Monitoring super-volcanoes: Geophysical and geochemical signals at Yellowstone and other large caldera systems. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2006, 364, 2055–2072. [Google Scholar] [CrossRef]
- Milluzzo, V.; Cannata, A.; Alparone, S.; Gambino, S.; Hellwegg, M.; Montalto, P.; Cammarata, L.; Diliberto, I.S.; Gresta, S.; Liotta, M.; et al. Tornillos at Vulcano: Clues to the dynamics of the hydrothermal system. J. Volcanol. Geotherm. Res. 2010. [Google Scholar] [CrossRef]
- Cannata, A.; Diliberto, I.S.; Alparone, S.; Gambino, S.; Gresta, S.; Liotta, M.; Montalto, P. Multiparametric approach in investigating volcano-hydrothermal systems: The case study of Vulcano (Aeolian Islands, Italy). Pure Appl. Geophys. 2012, 169, 167–182. [Google Scholar] [CrossRef]
- Bukumirovich, T.; Italiano, F.; Nuccio, P.M. The evolution of a dynamic geological system: The support of a GISfor geochemical measurements at the fumarole field of Vulcano, Italy. J. Volcanol. Geotherm. Res. 1997, 79, 253–263. [Google Scholar] [CrossRef]
- Diliberto, I.S. Long-term monitoring on a closed-conduit volcano: A 25year long time-series of temperatures recorded at La Fossa cone (Vulcano Island, Italy), ranging from 250 °C to 520 °C. J. Volcanol. Geotherm. Res. 2017. [Google Scholar] [CrossRef]
- Diliberto, I.S. Time series analysis of high temperature fumaroles monitored on the island of Vulcano (Aeolian Archipelago, Italy). J. Volcanol. Geotherm. Res. 2013, 264, 150–163. [Google Scholar] [CrossRef]
- Diliberto, I.S. Long-term variations of fumaroles temperatures on Vulcano Island (Italy). Ann. Geophys. 2011, 54. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Bonforte, A.; Gambino, S. Thermal expansion-contraction and slope instability of a fumaroles field inferred from geodetic measurements at Vulcano. Bull. Volcanol. 2010, 72, 791–801. [Google Scholar] [CrossRef]
- Calvari, S.; Lodato, L.; Spampinato, L. Monitoring active volcanoes using a handheld thermal camera. Thermosense 2004, 5405, 199–210. [Google Scholar]
- Chiodini, G.; Vilardo, G.; Augusti, V.; Granieri, D.; Caliro, S.; Minopoli, C.; Terranova, C. Thermal monitoring of hydrothermal activity by permanent infrared automatic stations: Results obtained at Solfatara di Pozzuoli, Campi Flegrei (Italy). J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Walter, T.R.; Legrand, D.; Granados, H.D.; Reyes, G.; Arámbula, R. Volcanic eruption monitoring by thermal image correlation: Pixel offsets show episodic dome growth of the Colima volcano. J. Geophys. Res. Solid Earth 2013, 118, 1408–1419. [Google Scholar] [CrossRef] [Green Version]
- Patrick, M.R.; Kauahikaua, J.; Orr, T.; Davies, A.; Ramsey, M. Operational thermal remote sensing and lava flow monitoring at the Hawaiian Volcano Observatory. Geol. Soc. Lond. Spec. Publ. 2016, 426, 489–503. [Google Scholar] [CrossRef]
- Mia, M.B.; Fujimitsu, Y.; Nishijima, J. Thermal Activity Monitoring of an Active Volcano Using Landsat 8/OLI-TIRS Sensor Images: A Case Study at the Aso Volcanic Area in Southwest Japan. Geosciences 2017, 7, 118. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Del Frate, F.; Drusch, M.; Jiménez-Muñoz, J.C.; Manunta, P.; Regan, A. Review of thermal infrared applications and requirements for future high-resolution sensors. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2963–2972. [Google Scholar] [CrossRef]
- Schmetz, J.; Pili, P.; Tjemkes, S.; Just, D.; Kerkmann, J.; Rota, S.; Ratier, A. An introduction to Meteosat second generation (MSG). Bull. Am. Meteorol. Soc. 2002, 83, 977–992. [Google Scholar] [CrossRef]
- Sun, D.; Pinker, R.T. Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES-8). J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Snyder, W. MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD), Version 3.2. In Institute for Computational Earth System Science; University of California: Santa Barbara, CA, USA, 1996. [Google Scholar]
- Li, Z.-L.; Becker, F. Feasibility of land surface temperature and emissivity determination from AVHRR data. Remote Sens. Environ. 1993, 85, 67–85. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Buongiorno, M.F.; Pieri, D.; Silvestri, M. Thermal analysis of volcanoes based on 10 years of ASTER data on Mt. Etna. In Thermal Infrared Remote Sensing; Springer: Dordrecht, The Netherlands, 2013; pp. 409–428. [Google Scholar]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.; Butterworth, A.; Carlton, R.; Downey, I.; Miller, P.; Navarro, P.; Rothery, D. Low-cost volcano surveillance from space: Case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus. Bull. Volcanol. 1997, 59, 49–64. [Google Scholar] [CrossRef]
- Lombardo, V.; Harris, A.J.L.; Calvari, S.; Buongiorno, M.F. Spatial variations in lava flow field thermal structure and effusion rate derived from very high spatial resolution hyperspectral (MIVIS) data. J. Geophys. Res. Solid Earth 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.J.; Rose, W.I.; Flynn, L.P. Temporal trends in lava dome extrusion at Santiaguito 1922–2000. Bull. Volcanol. 2003, 65, 77–89. [Google Scholar]
- Van Manen, S.M.; Dehn, J.; Blake, S. Satellite thermal observations of the Bezymianny lava dome 1993–2008: Precursory activity, large explosions, and dome growth. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.; Harris, A. VAST: A program to locate and analyse volcanic thermal anomalies automatically from remotely sensed data. Comput. Geosci. 1997, 23, 627–645. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Wright, R.; Flynn, L.P. Remote Monitoring of Mount Erebus Volcano, Antarctica, Using Polar Orbiters: Progress and Prospects. Int. J. Remote Sens. 1999, 20, 3051–3071. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, P.; Li, X. Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. Int. J. Remote Sens. 2004, 25, 61–72. [Google Scholar] [CrossRef]
- Wooster, M.J.; Rothery, D.A. Thermal monitoring of Lascar Volcano, Chile, using infrared data from the along-track scanning radiometer: A 1992–1995 time series. Bull. Volcanol. 1997, 58, 566–579. [Google Scholar] [CrossRef]
- Hogda, K.A.; Karlsen, S.R.; Solheim, I. Climatic change impact on growing season in Fennoscandia studied by a time series of NOAA AVHRR NDVI data. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, NSW, Australia, 9–13 July 2001. [Google Scholar]
- Locardi, E.; Nappi, G. Tettonica e vulcanismo recente nell’isola di Lipari. Bollettino Della Societa Geologica Italiana 1979, 98, 447–456. [Google Scholar]
- Mazzuoli, R.; Tortorici, L.; Ventura, G. Oblique rifting in Salina; Lipari and Vulcano islands (Aeolian islands; southern Italy). Terra Nova 1995, 7, 444–452. [Google Scholar] [CrossRef]
- Ventura, G. Tectonics, structural evolution and caldera formation on Vulcano Island (Aeolian Archipelago; southern Tyrrhenian Sea). J. Volcanol. Geotherm. Res. 1994, 60, 207–224. [Google Scholar] [CrossRef]
- Ventura, G. Relazioni fra Tettonica e Vulcanismo Nelle Isole del Tirreno Meridionale (Eolie, Ustica). Ph.D. Thesis, University of Cosenza, Rende, Italy, 1995. [Google Scholar]
- Ventura, G. Kinematics of the Aeolian volcanism (Southern Tyrrhenian Sea) from geophysical and geological data. Geol. Soc. Lond. Mem. 2013, 37, 3–11. [Google Scholar] [CrossRef]
- Lanzafame, G.; Bousquet, J.C. The Maltese escarpment and its extension from Mt. Etna to Aeolian Islands (Sicily): Importance and evolution of a lithosphere discontinuity. Acta Vulcanol. 1997, 9, 113–120. [Google Scholar]
- Ventura, G.; Vilardo, G.; Milano, G.; Pino, N.A. Relationships among crustal structure; volcanism and strike–slip tectonics in the Lipari–Vulcano volcanic complex (Aeolian Islands; Southern Tyrrhenian Sea, Italy). Phys. Earth Planet. Inter. 1999, 116, 31–52. [Google Scholar] [CrossRef]
- De Astis, G.; Ventura, G.; Vilardo, G. Geodynamic significance of the Aeolian volcanism (Southern Tyrrhenian Sea; Italy) in light of structural; seismological, and geochemical data. Tectonics 2003, 22. [Google Scholar] [CrossRef]
- Silvestri, M.; Arcomano, G.; Pruiti, L.; Valentini, E. Campagna di misure a Lipari per la calibrazione di dati iperspettrali da sensore aereo. Rapporti Tecnici INGV 2014, 275, 1–30. [Google Scholar]
- Keller, J. The island of Vulcano. Rendiconti della Societa Italiana di Mineralogia e Petrologia 1980, 36, 368–413. [Google Scholar]
- De Astis, G.; Lucchi, F.; Dellino, P.; La Volpe, L.; Tranne, C.A.; Frezzotti, M.L.; Peccerillo, A. Geology, volcanic history and petrology of Vulcano (central Aeolian archipelago). Geol. Soc. Lond. Mem. 2013, 37, 281–349. [Google Scholar] [CrossRef]
- De Astis, G.; Dellino, P.; La Volpe, L.; Lucchi, F.; Tranne, C.A. Geological Map of the Island of Vulcano (Aeolian Islands); Annals of Geophysics: Bari, Italy, 2006. [Google Scholar]
- Revil, A.; Finizola, A.; Piscitelli, S.; Rizzo, E.; Ricci, T.; Crespy, A.; Bolève, A. Inner structure of La Fossa di Vulcano (Vulcano Island, southern Tyrrhenian Sea, Italy) revealed by high-resolution electric resistivity tomography coupled with self-potential, temperature, and CO2 diffuse degassing measurements. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Frazzetta, G.; Lanzafame, G.; Villari, L. Deformazioni e tettonica attiva a Lipari e Vulcano (Eolie). Mem. Soc. Geol. It. 1982, 24, 293–297. [Google Scholar]
- Continisio, R.; Ferrucci, F.; Gaudiosi, G.; Lo Bascio, D.; Ventura, G. Malta escarpment and Mt. Etna: Early stages of an asymmetric rifting process? Evidences from geophysical and geological data. Acta Vulcanol. 1997, 9, 45–54. [Google Scholar]
- Keller, J. Die vulkanologisch-magmatologische Evolution der Insel Vulcano (Aeolische Inseln/Sizilien). 1972. Available online: http://www.zobodat.at/pdf/Berichte-naturf-Ges-Freiburg-Br_57_0033-0067.pdf (accessed on 1 January 2018).
- Frazzetta, G.; Gillot, P.Y.; La Volpe, L.; Sheridan, M.F. Volcanic hazards at Fossa of Vulcano: Data from the last 6000 years. Bull. Volcanol. 1984, 47, 105–124. [Google Scholar] [CrossRef]
- Dellino, P.; De Astis, G.; La Volpe, L.; Mele, D.; Sulpizio, R. Quantitative hazard assessment of phreatomagmatic eruptions at Vulcano (Aeolian Islands, Southern Italy) as obtained by combining stratigraphy, event statistics and physical modelling. J. Volcanol. Geotherm. Res. 2011, 201, 364–384. [Google Scholar] [CrossRef]
- Capasso, G.; Favara, R.; Inguaggiato, S. Chemical features and isotopic composition of gaseous manifestations on Vulcano Island, Aeolian Islands, Italy: An interpretative model of fluid circulation. Geochimica et Cosmochimica Acta 1997, 61, 3425–3440. [Google Scholar] [CrossRef]
- Inguaggiato, S.; Calderone, L.; Inguaggiato, C.; Mazot, A.; Morici, S.; Vita, F. Long-time variation of soil CO2 fluxes at the summit crater of Vulcano (Italy). Bull. Volcanol. 2012, 74, 1859–1863. [Google Scholar] [CrossRef]
- Inguaggiato, S.; Mazot, A.; Diliberto, I.S.; Inguaggiato, C.; Madonia, P.; Rouwet, D.; Vita, F. Total CO2 output from Vulcano island (Aeolian Islands, Italy). Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef]
- Inguaggiato, S.; Vita, F.; Cangemi, M.; Mazot, A.; Sollami, A.; Calderone, L.; Jacome Paz, M.P. Stromboli volcanic activity variations inferred by fluids geochemistry observations: Sixteen years of continuous soil CO2 fluxes monitoring (2000–2015). Chem. Geol. 2017. [Google Scholar] [CrossRef]
- Nuccio, P.M.; Paonita, A.; Sortino, F. Geochemical mixing between magmatic and hydrothermal gases: The case of Vulcano Island, Italy. Earth Planet. Sci. Lett. 1999, 167, 321–333. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Lodato, L.; Dehn, J.; Spampinato, L. Thermal characterization of the Vulcano fumarole field. Bull. Volcanol. 2009, 71, 441–458. [Google Scholar] [CrossRef]
- Granieri, D.; Carapezza, M.L.; Chiodini, G.; Avino, R.; Caliro, S.; Ranaldi, M.; Tarchini, L. Correlated increase in CO2 fumarolic content and diffuse emission from La Fossa crater (Vulcano, Italy): Evidence of volcanic unrest or increasing gas release from a stationary deep magma body? Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Aubert, M.; Diliberto, S.; Finizola, A.; Chébli, Y. Double origin of hydrothermal convective flux variations in the Fossa of Vulcano (Italy). Bull. Volcanol. 2008, 70, 743–751. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kahle, A.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef]
- Abrams, M.; Tsu, H.; Hulley, G.; Iwao, K.; Pieri, D.; Cudahy, T.; Kargel, J. The advanced spaceborne thermal emission and reflection radiometer (ASTER) after fifteen years: Review of global products. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 292–301. [Google Scholar] [CrossRef]
- Landsat 8. Available online: https://landsat.usgs.gov/landsat-8 (accessed on 1 January 2018).
- United States Geological Survey (USGS). Landsat 8 (L8) Data Users Handbook; Department of the Interior U.S. Geological Survey: Washinton, DC, USA, 2016; pp. 73–76.
- Musacchio, M.; Amici, S.; Silvestri, M.; Teggi, S.; Buongiorno, M.F.; Silenzi, S.; Devoti, S. Application of CIRILLO: A new atmospheric correction tool on Castel Porziano Beach (CPB). Remote Sens. Environ. Monit. GIS Appl. Geol. VII 2007, 674935. [Google Scholar] [CrossRef]
- Berk, A.; Bernsten, L.S.; Robertson, D.C. MODTRAN: A Moderate Resolution Model for LOWTRAN7; GL-TR-89-0122; Air Force Geophysics Laboratory: Hanscom AFB, MA, USA, 1989; p. 38.
- Adler-Golden, S.M.; Matthew, M.W.; Bernstein, L.S.; Levine, R.Y.; Berk, A.; Richtsmeier, S.C.; Acharya, P.K.; Anderson, G.P.; Felde, G.; Gardner, J.; et al. Atmospheric correction for shortwave spectral imagery based on MODTRAN4. SPIE Proc. Imaging Spectrom. 1999, 3753, 61–69. [Google Scholar]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcrette, J.J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Barsi, J.A.; Barker, J.L.; Schott, J.R. An Atmospheric Correction Parameter Calculator for a Single Thermal Band Earth-Sensing Instrument; Centre de Congres Pierre Baudis: Toulouse, France, 2003. [Google Scholar]
- On Demand Surface Emissivity. Available online: https://lpdaac.usgs.gov/dataset_discovery/aster/aster_products_table/ast_05 (accessed on 1 January 2018).
- Sounding profiles. Available online: http://weather.uwyo.edu/upperair/sounding.html (accessed on 1 January 2018).
- Zanter, K. Landsat 8 (L8) Data Users Handbook. Landsat Science Official Website. 2016. Available online: https://landsat. usgs. gov/landsat-8-l8-data-users-handbook (accessed on 20 January 2018).
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.J.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Diliberto, I.; Cappuzzo, S.; Inguaggiato, S.; Cosenza, P. Instrumental system for the quick relief of surface temperatures in fumaroles fields and steam heated soils. Geophys. Res. Abstr. 2014, 16. [Google Scholar]
- Cappuzzo, S.; Cosenza, P.; Gagliano, A.L.; Diliberto, I.S. Sviluppo di un sistema strumentale per il rilievo speditivo della temperatura su superfici esposte. Rapporti Tecnici INGV 2015, 316, 1–26. [Google Scholar]
- Francis, P.W. Infra-red techniques for volcano monitoring and prediction—A review. J. Geol. Soc. Lond. 1979, 136, 355–359. [Google Scholar] [CrossRef]
- Dozier, J. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens. Environ. 1981, 11, 221–229. [Google Scholar] [CrossRef]
- Calvari, S.; Lodato, L.; Spampinato, L. Monitoring Active Volcanoes Using a Handheld Thermal Camera. In Proceedings of the SPIE Thermosense XXVI, Orlando, FL, USA, 13–15 April 2004; Volume 5405, pp. 199–209. [Google Scholar]
- Calvari, S.; Spampinato, L.; Lodato, L.; Harris, A.J.L.; Patrick, M.; Dehn, J.; Burton, M.R.; Andronico, D. Chronology and complex volcanic processes during the 2002–2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera. J. Geophys. Res. 2005, 110, B02201. [Google Scholar] [CrossRef]
- Ball, M.; Pinkerton, H. Factors affecting the accuracy of thermal imaging cameras in volcanology. J. Geophys. Res. 2006, 111, B11203. [Google Scholar] [CrossRef]
- Sawyer, G.M.; Burton, M.R. Effects of a volcanic plume on thermal imaging data. Geophys. Res. Lett. 2006, 33, L14311. [Google Scholar] [CrossRef]
- Harris, A.J.L. Thermal Remote Sensing of Active Volcanoes: A User’s Manual; Cambridge Press: Cambridge, UK, 2013. [Google Scholar]
- Stevenson, J.A.; Varley, N. Fumarole monitoring with a handheld infrared camera: Volcán de Colima, Mexico, 2006–2007. J. Volcanol. Geotherm. Res. 2008, 177, 911–924. [Google Scholar] [CrossRef]
- Historical meteorological data on Vulcano island. Available online: https://oplao.com/it/weather (accessed on 1 January 2018).
- Colini, L.; Spinetti, C.; Lombardo, V.; Buongiorno, M.F.; Diliberto, I.S.; Pecoraino, G.; Brusca, L.; Guida, R.; Cafaro, P.; Liardo, S.; et al. La campagna di telerilevamento alle isole Eolie: Validazione dei dati acquisiti da un sensore aereo multispettrale. Rapporti Tecnici INGV 2012, 241, 1–30. [Google Scholar]
- Silvestri, M.; Diaz, J.A.; Vita, F.; Musacchio, M.; Puchalla, J.; Falcone, S.; Buongiorno, M.F.; Doumaz, F.; Wright, K. Improved instruments for volcanic plume observation for monitoring purpose: Solfatara and Vulcano island preliminary result. Rapporti tecnici INGV 2016, 349, 1–44. [Google Scholar]
- Diliberto, I.S. INGV-DPC Project V3_5—Vulcano Section 2. Rep. Individ. Res. Units 2007, 1, 1–7. [Google Scholar]
- Kneizys, F.X.; Shettle, E.P.; Gallery, W.O.; Chetwynd, J.H., Jr.; Abreu, L.W.; Selby, J.E.A.; Clugh, S.A.; Fenn, R.W. Atmospheric trasmittance/radiance: Computer code LOWTRAN 6. In Environmental Research Paper; Air Force Geophys. Lab.: Hanscom AFB, MA, USA, 1983. [Google Scholar]
Ground Survey | Satellite Data | ||
---|---|---|---|
Date | Site | ASTER | L8 |
12/06/2012 | La Fossa Crater | 16/06/2012 | -------- |
15/09/2014 | La Fossa Crater | 19/09/2014 | 11/09/2014 |
26/04/2017 | La Fossa Crater | -------- | 28/04/2017 |
15/09/2014 | Fangaia | 19/09/2014 | 11/09/2014 |
IR Camera Features | |
---|---|
Temperature range | 20 °C to 650 °C |
Field of view/min focus distance | 25° × 19°/9.8″ (0.25 m) |
detector type-Focal plane array | 640 × 480 pixels (FPA) uncooled microbolometer |
Spectral range | 7.5 to 14 µm |
Lens | 25° |
Accuracy | ±2 °C |
ATM Airborne Characteristics | |
---|---|
Data and time | 12/09/10 03:07 GMT |
Flight height | 4000 ft |
Plane velocity | 161 nodes |
IFOV | 2.5 mrad |
FOV | 85.92° |
Scan line | 712 pixels |
Scan Speed | 25 scan/s |
Ground pixel | ~3 m |
Point Lat/Lon | Time UTC | Oplao Web Site 5/9/2015 | Field Campaign 3/9/2015 | L8 5/9/2015 |
---|---|---|---|---|
38.40612°, 14.96066 | 5:43 AM | 29 °C | 28.4° | 29.69 |
N° Pixel | Ground T (°C) | ASTER T (°C) |
---|---|---|
1 | 23.94 | 41.10 ± 4.87 |
2 | 101.32 | 44.30 ± 4.51 |
3 | 69.08 | 46.50 ± 4.30 |
4 | - | - |
5 | - | - |
6 | 48.49 | 43.00 ± 4.65 |
7 | 60.93 | 46.40 ± 4.31 |
8 | 63.91 | 48.90 ± 4.09 |
9 | 74.10 | 49.10 ± 4.07 |
10 | 31.80 | 49.10 ± 4.07 |
11 | 43.24 | 46.40 ± 4.31 |
12 | ||
13 | ||
14 | 60.76 | 52.40 ± 3.82 |
15 | 35.21 | 49.10 ± 4.07 |
Ground T (°C) | ASTER T (°C) | L8 T (°C) | |
---|---|---|---|
1 | 43.00 | 48.30 ± 4.14 | 35.60 ± 5.62 |
2 | 87.00 | 48.50 ± 4.12 | 36.80 ± 5.43 |
3 | 87.90 | 48.31 ± 4.14 | 37.90 ± 5.28 |
4 | - | - | - |
5 | - | - | - |
6 | 37.64 | 52.62 ± 3.80 | 37.30 ± 5.36 |
7 | 49.12 | 52.68 ± 3.80 | 39.00 ± 5.13 |
8 | 69.90 | 50.06 ± 4.00 | 40.40 ± 4.95 |
9 | 77.18 | 47.50 ± 4.21 | 40.10 ± 4.99 |
10 | - | - | - |
11 | 30.92 | 51.57 ± 3.88 | 38.70 ± 5.17 |
12 | 42.00 | 49.84 ± 4.01 | 43.00 ± 4.65 |
13 | |||
14 | 65.55 | 45.59 ± 4.39 | 42.30 ± 4.73 |
15 | ---- | ---- |
N° Pixel | Ground T (°C) | L8 T (°C) |
---|---|---|
1 | 24.40 | 34.50 ± 5.80 |
2 | 74.66 | 34.50 ± 5.80 |
3 | 65.00 | 33.80 ± 5.92 |
4 | - | - |
5 | - | - |
6 | 49.07 | 36.08 ± 5.54 |
7 | 58.40 | 37.50 ± 5.33 |
8 | 56.65 | 37.60 ± 5.32 |
9 | 68.30 | 37.90 ± 5.28 |
10 | - | - |
11 | - | - |
12 | - | - |
13 | - | - |
14 | - | - |
15 | - | - |
N° Pixel | Ground T (°C) | ASTER T (°C) | L8 T (°C) |
---|---|---|---|
1 | 29.44 | 37.95 ± 5.27 | 34.41 ± 5.81 |
2 | 32.74 | 38.74 ± 5.16 | 34.80 ± 5.75 |
3 | 34.20 | 36.61 ± 5.46 | 35.67 ± 5.61 |
4 | 33.74 | 37.04 ± 5.40 | 36.52 ± 5.48 |
5 | 38.97 | 42.00 ± 4.76 | 36.68 ± 5.45 |
6 | 39.18 | 35.36 ± 5.66 | 36.63 ± 5.46 |
7 | 40.59 | 42.06 ± 4.76 | 36.75 ± 5.44 |
8 | 38.53 | 37.44 ± 5.34 | 37.22 ± 5.37 |
N° Pixel | ASTER T (°C) | Thermal Camera T (°C) | % of Thermal Camera Pixels |
---|---|---|---|
7 | 28.00 | 29.38 | 75 |
12 | 26.23 | 26.86 | 100 |
13 | 26.13 | 24.71 | 100 |
8 | 28.61 | 27.28 | 75 |
N° Pixel | ASTER Frequency | L8 Frequency |
---|---|---|
7 | 50 | 9 |
8 | 35 | - |
12 | 55 | 26 |
13 | 17 |
N° Pixel | ASTER Frequency | L8 Frequency |
---|---|---|
5 | 20 | 6 |
6 | 45 | 6 |
7 | 8 | 5 |
8 | 25 | 8 |
Site | ASTER Mean T (°C) 06/09/2010 | ASTER Mean T (°C) 22/09/2010 | ATM Mean T (°C) 12/09/2010 |
---|---|---|---|
La Fossa Crater | 24.90 ± 2.50 | 24.30 ± 2.40 | 28.70 ± 2.80 |
Fangaia | 26.70 ± 2.70 | 25.70 ± 2.60 | 27.20 ± 2.70 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvestri, M.; Rabuffi, F.; Pisciotta, A.; Musacchio, M.; Diliberto, I.S.; Spinetti, C.; Lombardo, V.; Colini, L.; Buongiorno, M.F. Analysis of Thermal Anomalies in Volcanic Areas Using Multiscale and Multitemporal Monitoring: Vulcano Island Test Case. Remote Sens. 2019, 11, 134. https://doi.org/10.3390/rs11020134
Silvestri M, Rabuffi F, Pisciotta A, Musacchio M, Diliberto IS, Spinetti C, Lombardo V, Colini L, Buongiorno MF. Analysis of Thermal Anomalies in Volcanic Areas Using Multiscale and Multitemporal Monitoring: Vulcano Island Test Case. Remote Sensing. 2019; 11(2):134. https://doi.org/10.3390/rs11020134
Chicago/Turabian StyleSilvestri, Malvina, Federico Rabuffi, Antonino Pisciotta, Massimo Musacchio, Iole Serena Diliberto, Claudia Spinetti, Valerio Lombardo, Laura Colini, and Maria Fabrizia Buongiorno. 2019. "Analysis of Thermal Anomalies in Volcanic Areas Using Multiscale and Multitemporal Monitoring: Vulcano Island Test Case" Remote Sensing 11, no. 2: 134. https://doi.org/10.3390/rs11020134
APA StyleSilvestri, M., Rabuffi, F., Pisciotta, A., Musacchio, M., Diliberto, I. S., Spinetti, C., Lombardo, V., Colini, L., & Buongiorno, M. F. (2019). Analysis of Thermal Anomalies in Volcanic Areas Using Multiscale and Multitemporal Monitoring: Vulcano Island Test Case. Remote Sensing, 11(2), 134. https://doi.org/10.3390/rs11020134