Using Neural Network to Identify the Severity of Wheat Fusarium Head Blight in the Field Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Image Preprocessing of Single Wheat Ear
2.3. Methods
2.3.1. Construction of Single Wheat Ear Segmentation Model
2.3.2. Segmentation Method of IABC-K-PCNN
2.3.3. Evaluation Method
3. Results
3.1. Results of Single Wheat Ear Segmentation
3.2. Results of Disease Spot Segmentation
3.3. Results of Disease Grading
4. Discussion
4.1. Analysis of the Shadow and Soil Effects on Wheat Ear Segmentation
4.2. Analysis of Disease Grading Effect on the Wheat FHB Detection
4.3. Analysis of the Influence of Different Growth Stages on Grading Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saccon, F.A.M.; Parcey, D.; Paliwal, J.; Sherif, S.S. Assessment of Fusarium and Deoxynivalenol Using Optical Methods. Food Bioprocess Technol. 2016, 10, 1–17. [Google Scholar] [CrossRef]
- Mcbeath, J.H.; Mcbeath, J. Plant Diseases, Pests and Food Security. Springer Neth. 2010, 35, 117–156. [Google Scholar]
- Miroslava, C.C.; Wang, L.; Lily, F.; Kerry, B.; Nadine, M.; Lan, B.; Pierre, R.F. Metabolic Biomarker Panels of Response to Fusarium Head Blight Infection in Different Wheat Varieties. PLoS ONE 2016, 11, e0153642. [Google Scholar]
- Yuan, Z.; Zhang, Y. Pesticide and Environment. Shanghai Chemcai Industry. 2000, 17, 4–5, (In Chinese with English Abstract). [Google Scholar]
- Kuenzer, C.; Knauer, K. Remote sensing of rice crop areas. Remote Sens. 2013, 34, 2101–2139. [Google Scholar] [CrossRef]
- Jin, X.; Jie, L.; Wang, S.; Qi, H.J.; Li, S.W. Classifying Wheat Hyperspectral Pixels of Healthy Heads and Fusarium Head Blight Disease Using a Deep Neural Network in the Wild Field. Remote Sens. 2018, 10, 395. [Google Scholar] [CrossRef]
- Bauriegel, E.; Giebel, A.; Geyer, M.; Schmidt, U.; Herppich, W.B. Early detection of Fusarium infection in wheat using hyper-spectral imaging. Comput. Electron. Agric. 2011, 75, 304–312. [Google Scholar] [CrossRef]
- Mohd, S.K.; Sabura, B.U.; Hemalatha, S. Anthracnose disease diagnosis by image processing, support vector machine and correlation with pigments. J. Plant Pathol. 2019. [Google Scholar] [CrossRef]
- Pantazi, X.Z.; Moshou, D.; Tamouridou, A.A. Automated leaf disease detection in different crop species through image features analysis and One Class Classifiers. Comput. Electron. Agric. 2019, 156, 96–104. [Google Scholar] [CrossRef]
- Jin, X.; Liu, S.; Baret, F.; Hemerlé, M.; Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 2017, 198, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Aarju, D.; Sumit, N. Wheat Leaf Disease Detection Using Machine Learning Method—A Review. Int. J. Comput. Sci. Mob. Comput. 2018, 7, 124–129. [Google Scholar]
- Joulin, A.; Bach, F.; Ponce, J. Discriminative clustering for image co-segmentation. In Proceedings of the 2010 Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13–18 June 2010. [Google Scholar]
- Aslam, A.; Khan, E.; Beg, M.M.S. Improved Edge Detection Algorithm for Brain Tumor Segmentation. Procedia Comput. Sci. 2015, 58, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Liang, D.; Yang, X.; Yang, H.; Yue, J.; Yang, G. Wheat ears counting in field conditions based on multi-feature optimization and twsvm. Front. Plant Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 39, 640–651. [Google Scholar]
- Yang, Q.; Liu, M.; Zhang, Z.; Yang, S.; Ning, J.; Han, W. Mapping Plastic Mulched Farmland for High Resolution Images of Unmanned Aerial Vehicle Using Deep Semantic Segmentation. Remote Sens. 2019, 11, 2008. [Google Scholar] [CrossRef]
- Cui, B.; Fei, D.; Shao, G.; Lu, Y.; Chu, J. Extracting Raft Aquaculture Areas from Remote Sensing Images via an Improved U-Net with a PSE Structure. Remote Sens. 2019, 11, 2053. [Google Scholar] [CrossRef]
- Du, Z.; Yang, J.; Ou, C.; Zhang, T. Smallholder Crop Area Mapped with a Semantic Segmentation Deep Learning Method. Remote Sens. 2019, 11, 888. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Zhang, S. Segmenting Crop Disease Leaf Image by Modified Fully-Convolutional Networks. Intell. Comput. Theor. Appl. 2019, 11643, 646–652. [Google Scholar]
- Akkus, Z.; Galimzianova, A.; Hoogi, A.; Rubin, D.L.; Erickson, B.J. Deep learning for brain mri segmentation: State of the art and future directions. J. Digit. Imaging 2017, 30, 449–459. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Hung, W.C.; Schulter, S.; Sohn, K.; Chandraker, M. Learning to adapt structured output space for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7472–7481. [Google Scholar]
- Wang, S.; He, D.; Han, J. Color Image Segmentation Method for Corn Diseases Based on Parallelized Firing PCNN. Trans. Chin. Soc. Agric. Mach. 2011, 42, 148–277. [Google Scholar]
- Guo, X.; Zhang, M.; Dai, Y. Image of Plant Disease Segmentation Model Based on Pulse Coupled Neural Network with Shuffle Frog Leap Algorithm. In Proceedings of the 2018 14th International Conference on Computational Intelligence and Security (CIS), Dubai, UAE, 19–20 November 2018. [Google Scholar]
- Johnson, J.L.; Padgett, M.L. PCNN models and applications. IEEE Trans. Neural Netw. 1999, 10, 480–498. [Google Scholar] [CrossRef] [PubMed]
- Gu, X. Feature Extraction using Unit-linking Pulse Coupled Neural Network and its Applications. Neural Process. Lett. 2008, 27, 25–41. [Google Scholar] [CrossRef]
- Broussard, R.P.; Rogers, S.K.; Oxley, M.E.; Tarr, G.L. Physiologically motivated image fusion for object detection using a pulse coupled neural network. IEEE Trans. Neural Netw. 1999, 10, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J. Particle Swarm Optimization. Proc. IEEE Int. Conf. Neural Netw. 2011, 4, 1942–1948. [Google Scholar]
- Holland, J.H. Genetic Algorithms. Sci. Am. A Div. Nat. Am. Inc. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Karaboga, D.; Akay, B. A survey: Algorithms simulating bee swarm intelligence. Artif. Intell. Rev. 2009, 31, 61–85. [Google Scholar] [CrossRef]
- Cong, T.; Wu, Z.; Wang, Z.; Deng, C. A novel hybrid data clustering algorithm based on Artificial Bee Colony algorithm and K-Means. Chin. J. Electron. 2015, 24, 694–701. [Google Scholar]
- Bose, A.; Mali, K. Fuzzy-based artificial bee colony optimization for gray image segmentation. Signal Image Video Process. 2016, 10, 1–8. [Google Scholar] [CrossRef]
- Dougherty, E.R.; Lotufo, R.A. Hands-on Morphological Image Processing; SPIE-The International Society for Optical Engineering: Bellingham, WA, USA, 2003. [Google Scholar]
- Kirkland, E.J. Bilinear Interpolation. Available online: https://doi.org/10.1007/978-1-4419-6533-2_12 (accessed on 20 September 2019).
- Sternberg, S.R. Grayscale morphology. Comput. Vision Graph. Image Process. 1986, 35, 333–355. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing & Computer-assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Ostu, N. A threshold selection method from gray-histogram. IEEE Trans. Syst. Man Cybern. 2007, 9, 62–66. [Google Scholar]
- Eckhorn, R. Neural mechanisms of scene segmentation: Recordings from the visual cortex suggest basic circuits for linking field models. IEEE Trans. Neural Netw. 1999, 10, 464–479. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Hong, Q.; Hou, M. Automatic image segmentation based on PCNN with adaptive threshold time constant. Neurocomputing 2011, 74, 1485–1491. [Google Scholar] [CrossRef]
- Bi, Y.W.; Que, T.S. An Adaptive Image Segmentation Method Based on Simplified PCNN. Electron. J. 2005, 33, 647–650, (in Chinese with English Abstract). [Google Scholar]
- Wagstaff, K.; Cardie, C.; Rogers, S.; Schrödl, S. Constrained k-means clustering with background knowledge. In Proceedings of the Eighteenth International Conference on Machine Learning, Williamstown, MA, USA, 28 June–1 July 2001; pp. 577–584. [Google Scholar]
- Bian, W.; Tao, D.C. Max-Min Distance Analysis by Using Sequential SDP Relaxation for Dimension Reduction. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
- Goudail, F.; Réfrégier, P. Statistical Image Processing Techniques for Noisy Images; Plenum Publishing Co.: New York, NY, USA, 2004. [Google Scholar]
- Mayer, J.E.; Mayer, M.G. Statistical mechanics. Philos. Sci. 1990, 1, 29–49. [Google Scholar]
- Gauch, J.M.; Chi, W.H. Comparison of three-color image segmentation algorithms in four color spaces. Proc. Spie Vis. Commun. Image Process. 1992, 1818, 1168–1181. [Google Scholar]
- Liao, C.Z.; Zhang, D.; Jiang, M.Y. Image Segmentation Based on ABC-PCNN Model. J. Nanjing Univ. Sci. Technol. 2014, 4, 558–565, (in Chinese with English Abstract). [Google Scholar]
- Clinton, N.; Holt, A.; Scarborough, J.; Yan, L.; Gong, P. Accuracy Assessment Measures for Object-based Image Segmentation Goodness. Photogramm. Eng. Remote Sens. 2010, 76, 289–299. [Google Scholar] [CrossRef]
- Meunkaewjinda, A.; Kumsawat, P.; Attakitmongcol, K.; Srikaew, A. Grape Leaf Disease Detection from Color Imagery System Using Hybrid Intelligent System. In Proceedings of the 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, Thailand, 14–17 May 2008. [Google Scholar]
- Su, H.Q.; Wen, C.J. A New Algorithm Based on Super-Green Features for Ostu’s Method Using Image Segmentation. In Proceedings of the World Automation Congress 2012, Puerto Vallarta, Mexico, Mexico, 24–28 June 2012. [Google Scholar]
- Gao, K.H.; Duan, H.B.; Xu, Y.; Zhang, Y.; Li, Z. Artificial Bee Colony approach to parameters optimization of Pulse Coupled Neural Networks. IEEE Int. Conf. Ind. Inform. 2012, 7203, 128–132. [Google Scholar]
- de Souza, D.L.; Neto, A.D.; da Mata, W. Intelligent system for feature extraction of oil slick in sar images: Speckle filter analysis. In Proceedings of the International Conference on Neural Information Processing, Hong Kong, China, 3–6 October 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 729–736. [Google Scholar]
- Huang, H.; Wu, B.; Fan, J. Analysis to the relationship of classification accuracy, segmentation scale, image resolution. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Toulouse, France, 21–25 July 2003. [Google Scholar]
Growth Period | Number of Misclassifications of Different Disease Grades | |||||
---|---|---|---|---|---|---|
Grade 0 | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | |
Flowering period | 1 | 2 | 1 | 0 | 2 | 0 |
Filling period | 0 | 1 | 0 | 0 | 1 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Wang, D.; Gu, C.; Jin, N.; Zhao, H.; Chen, G.; Liang, H.; Liang, D. Using Neural Network to Identify the Severity of Wheat Fusarium Head Blight in the Field Environment. Remote Sens. 2019, 11, 2375. https://doi.org/10.3390/rs11202375
Zhang D, Wang D, Gu C, Jin N, Zhao H, Chen G, Liang H, Liang D. Using Neural Network to Identify the Severity of Wheat Fusarium Head Blight in the Field Environment. Remote Sensing. 2019; 11(20):2375. https://doi.org/10.3390/rs11202375
Chicago/Turabian StyleZhang, Dongyan, Daoyong Wang, Chunyan Gu, Ning Jin, Haitao Zhao, Gao Chen, Hongyi Liang, and Dong Liang. 2019. "Using Neural Network to Identify the Severity of Wheat Fusarium Head Blight in the Field Environment" Remote Sensing 11, no. 20: 2375. https://doi.org/10.3390/rs11202375
APA StyleZhang, D., Wang, D., Gu, C., Jin, N., Zhao, H., Chen, G., Liang, H., & Liang, D. (2019). Using Neural Network to Identify the Severity of Wheat Fusarium Head Blight in the Field Environment. Remote Sensing, 11(20), 2375. https://doi.org/10.3390/rs11202375