Fast Super-Resolution of 20 m Sentinel-2 Bands Using Convolutional Neural Networks
Abstract
:1. Introduction
- a.
- Architectural improvements with the introduction of an additional convolutional layer.
- b.
- The definition of a new loss function which accounts for both spectral and structural consistency.
- c.
- An extensive experimental evaluation using diverse datasets for testing that confirms the generalization capabilities of the proposed approach.
2. Materials and Methods
- a.
- Selection/generation of a suitable dataset for training, validation and test;
- b.
- Design and implementation of one or more DL models;
- c.
- Training and validation of the models (b) using the selected dataset (a).
2.1. Datasets and Labels Generation
- (i)
- band-wise low-pass filtering; and
- (ii)
- uniform spatial subsampling, being R the target super-resolution factor.
2.2. Proposed Method
Training
3. Experimental Results
3.1. Accuracy Metrics
- Universal Image Quality Index (Q-Index) takes into account three different components: correlation coefficient, mean luminance distance and contrasts [49].
- Erreur Relative Globale Adimensionnelle de Synthése (ERGAS) measures the overall radiometric distortion between two images [50].
- Spectral Angle Mapper (SAM) measures the spectral divergence between images by averaging the pixel-wise angle between spectral signatures [51].
- High-pass Correlation Coefficient (HCC) is the correlation coefficient between the high-pass filtered components of two compared images [52].
- Spectral Distortion (D) measures the spectral distance between the bicubic upscaling of the image component to be super-resolved, , and its super-resolution, .
- Spatial Distortion (D) is a measurement of the spatial consistency between the super-resolved image and the high-resolution component .
- Quality No-Reference (QNR) index is a combination of the two above indexes that accounts for both spatial and spectral distortions.
3.2. Compared Methods
- Generalized Intensity Hue Saturation (GIHS) method [20].
- Brovey transform-based method [54].
- Indusion [55].
- Partial Replacement Adaptive Component Substitution (PRACS) [56].
- A Troús Wavelet Transform-based method (ATWT-M3) [22].
- The High-Pass Filtering (HPF) approach [21].
- Generalized Laplacian Pyramid with High Pass Modulation injection (MTF-GLP-HPM) [57].
- Gram-Schmidt algorithm with Generalized Laplacian Pyramid decomposition (GS2-GLP) [57].
- Our previous CNN-based method (M5) proposed in [11], extended (training from scratch) to all six 20 m bands.
- The CNN model (DSen2) proposed in [2], which is much deeper than ours and has been trained on a very large dataset.
- An enhancement of M5 where High-Pass filtering on the input and other minor changes have been introduced (HP-M5) [38], which represents a first insight on the improvements proposed in this work.
- FUSE with only three layers instead of four.
- FUSE trained using the norm without regularization and structural loss terms.
3.3. Numerical and Visual Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Lanaras, C.; Bioucas-Dias, J.; Galliani, S.; Baltsavias, E.; Schindler, K. Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network. ISPRS J. Photogramm. Remote Sens. 2018, 146, 305–319. [Google Scholar] [CrossRef]
- Mura, M.; Bottalico, F.; Giannetti, F.; Bertani, R.; Giannini, R.; Mancini, M.; Orlandini, S.; Travaglini, D.; Chirici, G. Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 126–134. [Google Scholar] [CrossRef]
- Castillo, J.A.A.; Apan, A.A.; Maraseni, T.N.; Salmo, S.G. Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS J. Photogramm. Remote Sens. 2017, 134, 70–85. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Kooistra, L.; Van den Brande, M.M.M. Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef]
- Delloye, C.; Weiss, M.; Defourny, P. Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote Sens. Environ. 2018, 216, 245–261. [Google Scholar] [CrossRef]
- Paul, F.; Winsvold, S.H.; Kääb, A.; Nagler, T.; Schwaizer, G. Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sens. 2016, 8, 575. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Pesaresi, M.; Corbane, C.; Julea, A.; Florczyk, A.J.; Syrris, V.; Soille, P. Assessment of the Added-Value of Sentinel-2 for Detecting Built-up Areas. Remote Sens. 2016, 8, 299. [Google Scholar] [CrossRef]
- Gargiulo, M.; Mazza, A.; Gaetano, R.; Ruello, G.; Scarpa, G. A CNN-Based Fusion Method for Super-Resolution of Sentinel-2 Data. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018, Valencia, Spain, 22–27 July 2018; pp. 4713–4716. [Google Scholar]
- Gargiulo, M.; Dell’Aglio, D.A.G.; Iodice, A.; Riccio, D.; Ruello, G. A CNN-Based Super-Resolution Technique for Active Fire Detection on Sentinel-2 Data. arXiv 2019, arXiv:1906.10413. [Google Scholar]
- Tzelidi, D.; Stagakis, S.; Mitraka, Z.; Chrysoulakis, N. Detailed urban surface characterization using spectra from enhanced spatial resolution Sentinel-2 imagery and a hierarchical multiple endmember spectral mixture analysis approach. J. Appl. Remote Sens. 2019, 13, 016514. [Google Scholar] [CrossRef]
- Zhang, M.; Su, W.; Fu, Y.; Zhu, D.; Xue, J.H.; Huang, J.; Wang, W.; Wu, J.; Yao, C. Super-resolution enhancement of Sentinel-2 image for retrieving LAI and chlorophyll content of summer corn. Eur. J. Agron. 2019, 111, 125938. [Google Scholar] [CrossRef]
- Yokoya, N.; Yairi, T.; Iwasaki, A. Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion. IEEE Trans. Geosci. Remote. Sens. 2012, 50, 528–537. [Google Scholar] [CrossRef]
- Lanaras, C.; Baltsavias, E.; Schindler, K. Hyperspectral Super-Resolution by Coupled Spectral Unmixing. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 3586–3594. [Google Scholar]
- Hong, D.; Yokoya, N.; Chanussot, J.; Zhu, X.X. An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing. IEEE Trans. Image Process. 2019, 28, 1923–1938. [Google Scholar] [CrossRef] [PubMed]
- Ibarrola-Ulzurrun, E.; Drumetz, L.; Marcello, J.; Gonzalo-Martín, C.; Chanussot, J. Hyperspectral Classification Through Unmixing Abundance Maps Addressing Spectral Variability. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4775–4788. [Google Scholar] [CrossRef]
- Shah, V.P.; Younan, N.H.; King, R.L. An Efficient Pan-Sharpening Method via a Combined Adaptive PCA Approach and Contourlets. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1323–1335. [Google Scholar] [CrossRef]
- Tu, T.M.; Su, S.C.; Shyu, H.C.; Huang, P.S. A new look at IHS-like image fusion methods. Inf. Fusion 2001, 2, 177–186. [Google Scholar] [CrossRef]
- Chavez, P.; Anderson, J. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic. Photogramm. Eng. Remote Sens. 1991, 57, 295–303. [Google Scholar]
- Ranchin, T.; Wald, L. Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation. Photogramm. Eng. Remote Sens. 2000, 66, 49–61. [Google Scholar]
- Fasbender, D.; Radoux, J.; Bogaert, P. Bayesian Data Fusion for Adaptable Image Pansharpening. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1847–1857. [Google Scholar] [CrossRef]
- Garzelli, A. Pansharpening of Multispectral Images Based on Nonlocal Parameter Optimization. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2096–2107. [Google Scholar] [CrossRef]
- Palsson, F.; Sveinsson, J.; Ulfarsson, M. A New Pansharpening Algorithm Based on Total Variation. IEEE Geosci. Remote Sens. Lett. 2014, 11, 318–322. [Google Scholar] [CrossRef]
- Vivone, G.; Alparone, L.; Chanussot, J.; Mura, M.D.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A Critical Comparison Among Pansharpening Algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, W.; Li, Z.; Atkinson, P.M. Fusion of Sentinel-2 images. Remote Sens. Environ. 2016, 187, 241–252. [Google Scholar] [CrossRef]
- Vaiopoulos, A.D.; Karantzalos, K. PANSHARPENING ON THE NARROW VNIR AND SWIR SPECTRAL BANDS OF SENTINEL-2. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2016, XLI-B7, 723–730. [Google Scholar] [CrossRef]
- Park, H.; Choi, J.; Park, N.; Choi, S. Sharpening the VNIR and SWIR Bands of Sentinel-2A Imagery through Modified Selected and Synthesized Band Schemes. Remote Sens. 2017, 9, 1080. [Google Scholar] [CrossRef]
- Gašparović, M.; Jogun, T. The effect of fusing Sentinel-2 bands on land-cover classification. Int. J. Remote Sens. 2018, 39, 822–841. [Google Scholar] [CrossRef]
- Brodu, N. Super-Resolving Multiresolution Images With Band-Independent Geometry of Multispectral Pixels. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4610–4617. [Google Scholar] [CrossRef]
- Lanaras, C.; Bioucas-Dias, J.; Baltsavias, E.; Schindler, K. Super-Resolution of Multispectral Multiresolution Images From a Single Sensor. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Paris, C.; Bioucas-Dias, J.; Bruzzone, L. A hierarchical approach to superresolution of multispectral images with different spatial resolutions. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2589–2592. [Google Scholar]
- Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G. Pansharpening by Convolutional Neural Networks. Remote Sens. 2016, 8, 594. [Google Scholar] [CrossRef]
- Scarpa, G.; Vitale, S.; Cozzolino, D. Target-Adaptive CNN-Based Pansharpening. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5443–5457. [Google Scholar] [CrossRef]
- Yang, J.; Fu, X.; Hu, Y.; Huang, Y.; Ding, X.; Paisley, J. PanNet: A Deep Network Architecture for Pan-Sharpening. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar] [CrossRef]
- Gargiulo, M. Advances on CNN-based super-resolution of Sentinel-2 images. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Saint Petersburg, Russia, 1–4 July 2019. [Google Scholar]
- Dong, C.; Loy, C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.K.L.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Yuan, Q.; Wei, Y.; Meng, X.; Shen, H.; Zhang, L. A Multiscale and Multidepth Convolutional Neural Network for Remote Sensing Imagery Pan-Sharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2018, 11, 978–989. [Google Scholar] [CrossRef]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolution: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Johnson, J.; Alahi, A.; Li, F. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. arXiv 2016, arXiv:1603.08155. [Google Scholar]
- Jiang, Y.; Ding, X.; Zeng, D.; Huang, Y.; Paisley, J. Pan-sharpening with a Hyper-Laplacian Penalty. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Wang, Z.; Bovik, A. A universal image quality index. IEEE Signal Process Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Wald, L. Data Fusion: Definitions and Architectures–Fusion of Images of Different Spatial Resolutions. In Les Presses de l’Ècole des Mines; Presses des Mines: Paris, France, 2002. [Google Scholar]
- Chang, C.I. Spectral information divergence for hyperspectral image analysis. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium IGARSS’99 (Cat. No. 99CH36293), Hamburg, Germany, 28 June–2 July 1999; Volume 1, pp. 509–511. [Google Scholar]
- Zhou, J.; Civco, D.; Silander, J. A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. Remote Sens. 1998, 19, 743–757. [Google Scholar] [CrossRef]
- Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F.; Selva, M. Multispectral and panchromatic data fusion assessment without reference. Photogramm. Eng. Remote Sens. 2008, 74, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, A.R.; Kahle, A.B.; Walker, R.E. Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques. Remote Sens. Environ. 1987, 22, 343–365. [Google Scholar] [CrossRef]
- Khan, M.M.; Chanussot, J.; Condat, L.; Montanvert, A. Indusion: Fusion of multispectral and panchromatic images using the induction scaling technique. IEEE Geosci. Remote Sens. Lett. 2008, 5, 98–102. [Google Scholar] [CrossRef]
- Choi, J.; Yu, K.; Kim, Y. A new adaptive component-substitution-based satellite image fusion by using partial replacement. IEEE Trans. Geosci. Remote Sens. 2011, 49, 295–309. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF-tailored multiscale fusion of high-resolution MS and Pan imagery. Photogramm. Eng. Remote Sens. 2006, 72, 591–596. [Google Scholar] [CrossRef]
rom | ven | gui |
rom2 | ven2 | gui2 |
Rome | Venice | Geba River |
Bands | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B8a | B9 | B10 | B11 | B12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Center wavelength [nm] | 443 | 490 | 560 | 665 | 705 | 740 | 783 | 842 | 865 | 945 | 1380 | 1610 | 2190 |
Bandwidth [nm] | 20 | 65 | 35 | 30 | 15 | 15 | 20 | 115 | 20 | 20 | 30 | 90 | 180 |
Spatial resolution [m] | 60 | 10 | 10 | 10 | 20 | 20 | 20 | 10 | 20 | 60 | 60 | 20 | 20 |
Symbol | Meaning |
---|---|
Stack of six S2 spectral bands (B5, B6, B7, Bba, B11, B12) to be super-resolved. | |
Stack of four high-resolution S2 bands (B2, B3, B4, B8). | |
, | High-pass filtered versions of and , respectively. |
Super-resolved version of . | |
Full-resolution reference (also referred to as ground truth or label), usually unavailable. | |
generic band of , respectively. | |
Upsampled (via bicubic) versions of , respectively. | |
Single (average) band of . | |
, , ,... | Reduced-resolution domain variables associated with , , ,..., respectively. Whenever unambiguous subscript will be dropped. |
ConvLayer 1 | ConvLayer 2 | ConvLayer 3 | ConvLayer 4 | |
---|---|---|---|---|
Input Channels | 10 | 48 | 32 | 32 |
Spatial Support | 3 × 3 | 3 × 3 | 3 × 3 | 3 × 3 |
Output Channels | 48 | 32 | 32 | 1 |
Activation | ReLU | ReLU | ReLU | tanh |
Reference-Based | No-Reference | ||||||
---|---|---|---|---|---|---|---|
Method | Q | HCC | ERGAS | SAM | QNR | D | D |
(Ideal) | (1) | (1) | (0) | (0) | (1) | (0) | (0) |
HPF | 0.9674 | 0.6231 | 3.054 | 0.0641 | 0.8119 | 0.1348 | 0.0679 |
Brovey | 0.9002 | 0.6738 | 4.581 | 0.0026 | 0.6717 | 0.2382 | 0.1241 |
MTF_GLP_HPM | 0.8560 | 0.6077 | 19.82 | 0.2813 | 0.7802 | 0.1678 | 0.0643 |
GS2_GLP | 0.9759 | 0.6821 | 2.613 | 0.0564 | 0.8129 | 0.1367 | 0.0647 |
ATWT-M3 | 0.9573 | 0.6965 | 3.009 | 0.0019 | 0.8627 | 0.0947 | 0.0473 |
PRACS | 0.9767 | 0.7284 | 2.274 | 0.0019 | 0.8800 | 0.0847 | 0.0395 |
GIHS | 0.8622 | 0.6601 | 5.336 | 0.0579 | 0.6112 | 0.2999 | 0.1444 |
Indusion | 0.9582 | 0.6273 | 3.314 | 0.0425 | 0.8424 | 0.1311 | 0.0321 |
M5 | 0.9883 | 0.8432 | 1.830 | 0.0019 | 0.8715 | 0.0942 | 0.0389 |
HP-M5 | 0.9895 | 0.8492 | 1.720 | 0.0282 | 0.8779 | 0.0931 | 0.0329 |
DSen2 | 0.9916 | 0.8712 | 1.480 | 0.0194 | 0.8684 | 0.1028 | 0.0330 |
FUSE (3 layers) | 0.9931 | 0.8602 | 1.631 | 0.0020 | 0.8521 | 0.1082 | 0.0474 |
FUSE ( loss) | 0.9930 | 0.8660 | 1.681 | 0.1963 | 0.8570 | 0.1081 | 0.0410 |
FUSE (full version) | 0.9934 | 0.8830 | 1.354 | 0.0184 | 0.8818 | 0.1002 | 0.0203 |
GPU Memory (Time) | |||||
---|---|---|---|---|---|
Im. Size | 512 × 512 | 512 × 1024 | 1024 × 1024 | 1024 × 2048 | 2048 × 2048 |
DSen2 | 6.6 GB (3.4 s) | 8.7 GB (4.3 s) | 9.2 GB (7.4 s) | 17.4 GB (9.8) | out of memory |
FUSE | 391 MB (6×0.45 s) | 499 MB (6 × 0.47 s) | 707 MB (6 × 0.50 s) | 1.1 GB (6 × 0.55 s) | 1.9 GB (6 × 0.60 s) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gargiulo, M.; Mazza, A.; Gaetano, R.; Ruello, G.; Scarpa, G. Fast Super-Resolution of 20 m Sentinel-2 Bands Using Convolutional Neural Networks. Remote Sens. 2019, 11, 2635. https://doi.org/10.3390/rs11222635
Gargiulo M, Mazza A, Gaetano R, Ruello G, Scarpa G. Fast Super-Resolution of 20 m Sentinel-2 Bands Using Convolutional Neural Networks. Remote Sensing. 2019; 11(22):2635. https://doi.org/10.3390/rs11222635
Chicago/Turabian StyleGargiulo, Massimiliano, Antonio Mazza, Raffaele Gaetano, Giuseppe Ruello, and Giuseppe Scarpa. 2019. "Fast Super-Resolution of 20 m Sentinel-2 Bands Using Convolutional Neural Networks" Remote Sensing 11, no. 22: 2635. https://doi.org/10.3390/rs11222635
APA StyleGargiulo, M., Mazza, A., Gaetano, R., Ruello, G., & Scarpa, G. (2019). Fast Super-Resolution of 20 m Sentinel-2 Bands Using Convolutional Neural Networks. Remote Sensing, 11(22), 2635. https://doi.org/10.3390/rs11222635