Assessment of Night-Time Lighting for Global Terrestrial Protected and Wilderness Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protected Areas and Data
2.2. DMSP/OLS NTL Data
2.3. Data Processing
2.3.1. Inter-Annual Correction
2.3.2. Inter-Satellite Correction
2.3.3. Intra-Annual Correction
2.3.4. Correction for Different Sensors
2.3.5. Evaluation of the Calibrated NTL Time Series
2.4. Calculation of the Trend Using Sen’s Slope
3. Results
3.1. Spatial Distribution and Trend of NTL for Global PAs
3.2. Average NTL Level in Different PAs and Buffers
3.3. NTL Growth Rate in Different PAs and Buffers
3.4. Trends in Different PAs and Buffer Zones
4. Discussion
4.1. The NTL Distribution Pattern in Different Types of PAs
4.2. Skyglow as a Biodiversity Threat
4.3. Limitations of Night-Time Lighting Data
Author Contributions
Funding
Conflicts of Interest
References
- UNEP-WCMC; IUCN. Protected Planet Report 2016; UNEP-WCMC: Cambridge, UK; IUCN: Gland, Switzerland, 2016; ISBN 978-92-807-3587-1. Available online: https://www.iucn.org/theme/protected-areas/publications/protected-planet-report (accessed on 12 June 2019).
- Wang, Y. Remote Sensing of Protected Lands; CRC Press: Boca Raton, FL, USA, 2011; ISBN 978-1-4398-4187-7. [Google Scholar]
- Elvidge, C.D.; Sutton, P.C.; Wagner, T.W.; Ryzner, R.; Vogelmann, J.V.; Goetz, S.J.; Smith, A.J.; Jantz, C.; Seto, K.C.; Imhoff, M.L.; et al. (Eds.) Land Change Science; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 315–328. [Google Scholar]
- Crabtree, R.L.; Sheldon, J.W.; Sheldon, J.W. Monitoring and Modeling Environmental Change in Protected Areas: Integration of Focal Species Populations and Remote Sensing. In Remote Sensing of Protected Lands; CRC Press: Boca Raton, FL, USA, 2012; pp. 495–524. [Google Scholar]
- IUCN. Shaping a sustainable future. In The IUCN Programme 2009–2012; IUCN: Gland, Switzerland, 2008. [Google Scholar]
- Heinen, J.; Hite, K. Protected natural areas. In Encyclopedia of Earth; Cutler, J., Cleveland, C.J., Eds.; Environmental Information Coalition, National Council for Science and the Environment: Washington, DC, USA, 2007. [Google Scholar]
- Hoffmann, M.; Hilton-Taylor, C.; Angulo, A.; Böhm, M.; Brooks, T.M.; Butchart, S.H.M.; Carpenter, K.E.; Chanson, J.; Collen, B.; Cox, N.A.; et al. The Impact of Conservation on the Status of the World’s Vertebrates. Science 2010, 330, 1503. [Google Scholar] [CrossRef]
- Pereira, H.M.; Leadley, P.W.; Proença, V.; Alkemade, R.; Scharlemann, J.P.W.; Fernandez-Manjarrés, J.F.; Araújo, M.B.; Balvanera, P.; Biggs, R.; Cheung, W.W.L.; et al. Scenarios for Global Biodiversity in the 21st Century. Science 2010, 330, 1496. [Google Scholar] [CrossRef]
- Watson, J.E.M.; Venter, O.; Lee, J.; Jones, K.R.; Robinson, J.G.; Possingham, H.P.; Allan, J.R. Protect the last of the wild. Nature 2018, 563, 27. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, J.R.; Quinn, R.M.; Lawton, J.H.; Eversham, B.C.; Gibbons, D.W. Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 1993, 365, 335. [Google Scholar] [CrossRef]
- Finlayson, M.; Cruz, R.D.; Davidson, N.; Alder, J.; Cork, S.; Groot, R.S.D.; Leveque, C.; Milton, G.R.; Peterson, G.; Pritchard, D.; et al. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being: Wetlands and Water Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Gaston, K.J.; Jackson, S.F.; Cantúsalazar, L.; Cruzpiñón, G. The Ecological Performance of Protected Areas. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 93–113. [Google Scholar] [CrossRef]
- Walker, R.; Moore, N.J.; Arima, E.; Perz, S.; Simmons, C.; Caldas, M.; Vergara, D.; Bohrer, C. Protecting the Amazon with protected areas. Proc. Natl. Acad. Sci. USA 2009, 106, 10582–10586. [Google Scholar] [CrossRef] [PubMed]
- George, W.; Paul, E.; Bean, W.T.; Burton, A.C.O.; Brashares, J.S. Accelerated human population growth at protected area edges. Science 2008, 321, 123–126. [Google Scholar]
- Scherl, L.M.; Wilson, A.; Wild, R.; Blockhus, J.; Franks, P.; Mcneely, J.A.; Mcshane, T.O. Can protected areas contribute to poverty reduction? opportunities and limitations. Biodiversity 2010, 11, 5–7. [Google Scholar]
- Zhou, Y.; Li, X.; Asrar, G.R.; Smith, S.J.; Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sens. Environ. 2018, 219, 206–220. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y. Urban mapping using DMSP/OLS stable night-time light: A review. Int. J. Remote Sens. 2017, 38, 6030–6046. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Andelman, S.J.; Bakarr, M.I.; Boitani, L.; Brooks, T.M.; Cowling, R.M.; Fishpool, L.D.; Da, F.G.; Gaston, K.J.; Hoffmann, M. Effectiveness of the global protected area network in representing species diversity. Nature 2004, 428, 640–643. [Google Scholar] [CrossRef] [PubMed]
- Bruner, A.G.; Gullison, R.E.; Rice, R.E.; Fonseca, G.A. Effectiveness of parks in protecting tropical biodiversity. Science 2001, 291, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Andam, K.S.; Ferraro, P.J.; Pfaff, A.; Sanchez-Azofeifa, G.A.; Robalino, J.A. Measuring the Effectiveness of Protected Area Networks in Reducing Deforestation. Proc. Natl. Acad. Sci. USA 2008, 105, 16089–16094. [Google Scholar] [CrossRef] [PubMed]
- Brun, C.; Cook, A.R.; Lee, J.S.H.; Wich, S.A.; Lian, P.K.; Carrasco, L.R. Analysis of deforestation and protected area effectiveness in Indonesia: A comparison of Bayesian spatial models. Glob. Environ. Chang. 2015, 31, 285–295. [Google Scholar] [CrossRef]
- Foley, J.A.; Ruth, D.; Asner, G.P.; Carol, B.; Gordon, B.; Carpenter, S.R.; F Stuart, C.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Mcdonald, R.I.; Kareiva, P.; Forman, R.T.T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 2008, 141, 1695–1703. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J.; Gimmi, U.; Pidgeon, A.M.; Flather, C.H.; Hammer, R.B.; Helmers, D.P. Housing growth in and near United States protected areas limits their conservation value. Proc. Natl. Acad. Sci. USA 2010, 107, 940–945. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Asrar, G.R.; Mao, J.; Li, X.; Li, W. Response of vegetation phenology to urbanization in the conterminous United States. Glob. Chang. Biol. 2017, 23, 2818–2830. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Sutton, P.C.; Baugh, K.E.; Ziskin, D.C.; Anderson, S. National Trends in Satellite Observed Lighting: 1992–2009. In Proceedings of the Agu Fall Meeting, San Francisco, CA, USA, 5–9 December 2011. [Google Scholar]
- Hsu, F.C.; Baugh, K.E.; Ghosh, T.; Zhizhin, M.; Elvidge, C.D. DMSP-OLS Radiance Calibrated Nighttime Lights Time Series with Intercalibration. Remote Sens. 2015, 7, 1855–1876. [Google Scholar] [CrossRef]
- Zhang, Q.; Pandey, B.; Seto, K.C. A Robust Method to Generate a Consistent Time Series from DMSP/OLS Nighttime Light Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5821–5831. [Google Scholar] [CrossRef]
- Gaston, K.J.; Bennie, J. Demographic effects of artificial nighttime lighting on animal populations. Doss. Environ. 2014, 22, 323–330. [Google Scholar] [CrossRef]
- Gaston, K.J.; Duffy, J.P.; Bennie, J. Quantifying the erosion of natural darkness in the global protected area system. Conserv. Biol. 2015, 29, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Longcore, T.; Rich, C. Ecological Light Pollution. Front. Ecol. Environ. 2004, 2, 191–198. [Google Scholar] [CrossRef]
- Bennie, J.; Duffy, J.P.; Davies, T.W.; Correa-Cano, M.E.; Gaston, K.J. Global Trends in Exposure to Light Pollution in Natural Terrestrial Ecosystems. Remote Sens. 2015, 7, 2715–2730. [Google Scholar] [CrossRef]
- Freitas, J.R.; Bennie, J.; Mantovani, W.; Gaston, K.J. Exposure of tropical ecosystems to artificial light at night: Brazil as a case study. PLoS ONE 2017, 12, e0171655. [Google Scholar] [CrossRef]
- Koen, E.L.; Minnaar, C.; Roever, C.L.; Boyles, J.G. Emerging threat of the 21st century lightscape to global biodiversity. Glob. Chang. Biol. 2018, 24, 2315–2324. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef]
- Wei, J.; He, G.; Leng, W.; Long, T.; Guo, H. Characterizing Light Pollution Trends across Protected Areas in China Using Nighttime Light Remote Sensing Data. ISPRS Int. J. Geo-Inf. 2018, 7, 243. [Google Scholar]
- Xiang, W.; Tan, M. Changes in Light Pollution and the Causing Factors in China’s Protected Areas, 1992–2012. Remote Sens. 2017, 9, 1026. [Google Scholar] [CrossRef]
- Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J. Stemming the Tide of Light Pollution Encroaching into Marine Protected Areas. Conserv. Lett. 2015, 9, 164–171. [Google Scholar] [CrossRef]
- Raap, T.; Pinxten, R.; Eens, M. Artificial light at night causes an unexpected increase in oxalate in developing male songbirds. Conserv. Physiol. 2018, 6, coy005. [Google Scholar] [CrossRef] [PubMed]
- Geldmann, J.; Joppa, L.N.; Burgess, N.D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 2015, 28, 1604–1616. [Google Scholar] [CrossRef] [PubMed]
- Theobald, D.M.; Miller, J.R.; Hobbs, N.T. Estimating the cumulative effects of development on wildlife habitat. Landsc. Urban Plan. 1997, 39, 25–36. [Google Scholar] [CrossRef]
- He, C.; Li, J.; Chen, J.; Shi, P.; Chen, J.; Pan, Y.; Li, J.; Zhuo, L.; Toshiaki, I. The urbanization process of Bohai Rim in the 1990s by using DMSP/OLS data. J. Geogr. Sci. 2006, 16, 174–182. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Chen, X.; Nordhaus, W.D. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. USA 2011, 108, 8589. [Google Scholar] [CrossRef] [Green Version]
- Pandey, B.; Joshi, P.K.; Seto, K.C. Monitoring urbanization dynamics in India using DMSP/OLS night time lights and SPOT-VGT data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 49–61. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Elvidge, C.; Imhoff, M.; Baugh, K.; Hobson, V.; Nelson, I.; Safran, J.; Dietz, J.; Tuttle, B. Night-time lights of the world: 1994–1995. ISPRS J. Photogramm. Remote Sens. 2001, 56, 81–99. [Google Scholar] [CrossRef]
- Seto, K.C.; Zhang, Q. Can Night-Time Light Data Identify Typologies of Urbanization? A Global Assessment of Successes and Failures. Remote Sens. 2013, 5, 3476–3494. [Google Scholar]
- Lyytimäki, J.; Tapio, P.; Assmuth, T. Unawareness in environmental protection: The case of light pollution from traffic. Land Use Policy 2012, 29, 598–604. [Google Scholar] [CrossRef]
- de Miguel, A.S.; Zamorano, J.; Castano, J.G.; Pascual, S. Evolution of the energy consumed by street lighting in Spain estimated with DMSP-OLS data. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 109–117. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Ma, Q.; Li, T.; Yang, Y.; Liu, Z. Spatiotemporal dynamics of electric power consumption in Chinese Mainland from 1995 to 2008 modeled using DMSP/OLS stable nighttime lights data. J. Geogr. Sci. 2012, 22, 125–136. [Google Scholar] [CrossRef]
- Wu, J.; He, S.; Peng, J.; Li, W.; Zhong, X. Intercalibration of DMSP-OLS night-time light data by the invariant region method. Int. J. Remote Sens. 2013, 34, 7356–7368. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y. A Stepwise Calibration of Global DMSP/OLS Stable Nighttime Light Data (1992–2013). Remote Sens. 2017, 9, 637. [Google Scholar]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Dudley, N. Guidelines for Applying Protected Area Management Categories; IUCN: Gland, Switzerland, 2008; ISBN 978-2-8317-1086-0. [Google Scholar]
- Radeloff, V.C.; Hammer, R.B.; Stewart, S.I. Rural and Suburban Sprawl in the U.S. Midwest from 1940 to 2000 and Its Relation to Forest Fragmentation. Conserv. Biol. 2005, 19, 793–805. [Google Scholar] [CrossRef]
- Crooks, K.R.; Soulé, M.E. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 1999, 400, 563–566. [Google Scholar] [CrossRef]
- Woodroffe, R. Edge Effects and the Extinction of Populations Inside Protected Areas. Science 1998, 280, 2126–2128. [Google Scholar] [CrossRef] [Green Version]
- Davies, T.; Bennie, J.; Inger, R.; Gaston, K. Artificial light alters regimes of natural sky brightness. Sci. Rep. 2013, 3, 1722. [Google Scholar] [CrossRef] [Green Version]
- Puschnig, J.; Posch, T.; Uttenthaler, S. Night sky photometry and spectroscopy performed at the Vienna University Observatory. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Dunlap, J. Molecular Bases for Circadian Clocks. Cell 1999, 96, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Hölker, F.; Wolter, C.; Perkin, E. Light Pollution as a Biodiversity Threat. Trends Ecol. Evol. 2010, 25, 681–682. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Verhoeven, K.J.F. Impact of Artificial Lighting on the Seaward Orientation of Hatchling Loggerhead Turtles. J. Herpetol. 1994, 28, 112–114. [Google Scholar] [CrossRef]
- Emma Louise, S.; Gareth, J.; Stephen, H. Street lighting disturbs commuting bats. Curr. Biol. CB 2009, 19, 1123–1127. [Google Scholar]
- Rydell, J. Seasonal use of illuminated areas by foraging northern bats Eptesicus nilssoni. Ecography 1991, 14, 203–207. [Google Scholar] [CrossRef]
- Buchanan, B.W. Effects of enhanced lighting on the behaviour of nocturnal frogs. Anim. Behav. 1993, 45, 893–899. [Google Scholar] [CrossRef] [Green Version]
- Bird, B.L.; Branch, L.C.; Miller, D.L. Effects of Coastal Lighting on Foraging Behaviorof Beach Mice. Conserv. Biol. 2004, 18, 1435–1439. [Google Scholar] [CrossRef]
- Santos, C.D.; Miranda, A.C.; Granadeiro, J.P.; Lourenco, P.M.; Saraiva, S.; Palmeirim, J.M. Effects of artificial illumination on the nocturnal foraging of waders. Acta Oecol. 2010, 36, 166–172. [Google Scholar] [CrossRef]
- Svensson, A.M.; Rydell, J. Mercury vapour lamps interfere with the bat defence of tympanate moths (Operophtera spp.; Geometridae). Anim. Behav. 1998, 55, 223–226. [Google Scholar] [CrossRef] [Green Version]
- Baker, B.J.; Richardson, J. The effect of artificial light on male breeding-season behaviour in green frogs, Rana clamitans melanota. Can. J. Zool. 2006, 84, 1528–1532. [Google Scholar] [CrossRef]
- Miller, M.W. Apparent Effects of Light Pollution on Singing Behavior of American Robins. Condor 2006, 108, 130. [Google Scholar] [CrossRef]
- Boldogh, S.; Dobrosi, D.; Samu, P. The effects of the illumination of buildings on house-dwelling bats and its conservation consequences. Acta Chiropterol. 2007, 9, 527–534. [Google Scholar] [CrossRef]
- Gaston, K.J.; Davies, T.W.; Bennie, J.; Hopkins, J.; Fernandez-Juricic, E. Review: Reducing the ecological consequences of night-time light pollution: Options and developments. J. Appl. Ecol. 2012, 49, 1256–1266. [Google Scholar] [CrossRef] [Green Version]
- Kyba, C.C.M.; Hölker, F. Do artificially illuminated skies affect biodiversity in nocturnal landscapes? Landsc. Ecol. 2013, 28, 1637–1640. [Google Scholar] [CrossRef] [Green Version]
IUCN PAs Type | IUCN PAs Code | Number of PAs | Area (km2) | Description |
---|---|---|---|---|
Strict Nature Reserve | Ia | 11,921 | 3,874,328 | PAs that are strictly set aside to protect biodiversity and also possibly geological/geomorphological features, where human visitation, use, and impacts are strictly controlled and limited to ensure the protection of the conservation values. |
Wilderness Area | Ib | 3114 | 1,152,403 | PAs that are usually large unmodified or slightly modified areas, retaining their natural character and influence, without permanent or significant human habitation. |
National Park | Ⅱ | 5523 | 6,178,074 | Large natural or near natural areas set aside to protect large-scale ecological processes, along with the complement of species and ecosystems characteristic of the area, which also provide a foundation for environmentally and culturally compatible spiritual, scientific, educational, recreational, and visitor opportunities. |
Natural Monument or Feature | Ⅲ | 14,317 | 434,460 | PAs set aside to protect specific natural monuments, which can be a landform; sea mount; submarine cavern; geological feature, such as a cave; or even a living feature, such as an ancient grove. They are generally quite small protected areas and often have a high visitor value. |
Habitat/Species Management Area | Ⅳ | 56,836 | 7,250,215 | PAs aiming to protect particular species or habitats and management reflects this priority. Many category IV PAs will need regular, active interventions to address the requirements of particular species or to maintain habitats, but this is not a requirement of the category. |
Protected Landscape/Seascape | V | 44,915 | 4,351,409 | PAs where the interaction of people and nature over time have produced the area of distinct character with significant ecological, biological, cultural, and scenic value. |
Protected Area with Sustainable use of Natural Resources | Ⅵ | 7177 | 12,757,697 | PAs that conserve ecosystems and habitats, together with associated cultural values and traditional natural resource management systems. They are generally large, with most of the area in a natural condition, where a proportion is under sustainable natural resource management and where low-level, non-industrial use of natural resources compatible with nature conservation is seen as one of the main aims of the area. |
PA Type | Interior | 0–1 km | 1–5 km | 5–10 km | 10–25 km | 25–50 km | 50–100 km |
---|---|---|---|---|---|---|---|
Ia | 0.098 | 1.572 | 2.372 | 2.598 | 2.478 | 2.344 | 1.916↑ |
Ib | 0.039 | 0.496 | 0.920 | 1.380 | 1.897 | 2.317 | 2.452↑ |
II | 0.147 | 1.129 | 1.602 | 1.920 | 1.932 | 1.702 | 1.427 |
III | 0.594 | 4.868↑ | 6.289↑ | 6.038 | 4.734↑ | 3.272↑ | 2.013↑ |
IV | 0.652 | 1.317 | 3.593↑ | 3.301 | 2.631 | 2.078 | 1.456 |
V | 3.184↑ | 3.270↑ | 7.151↑ | 6.840↑ | 5.418↑ | 3.610↑ | 2.357↑ |
VI | 0.160 | 0.169 | 1.217 | 1.483 | 1.739 | 1.811 | 1.692 |
Ave. | 0.696 | 1.832 | 3.307 | 3.366 | 2.975 | 2.448 | 1.902 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Zhao, J.; Wang, Y.; Ren, Z.; Zhang, H.; Guo, X. Assessment of Night-Time Lighting for Global Terrestrial Protected and Wilderness Areas. Remote Sens. 2019, 11, 2699. https://doi.org/10.3390/rs11222699
Fan L, Zhao J, Wang Y, Ren Z, Zhang H, Guo X. Assessment of Night-Time Lighting for Global Terrestrial Protected and Wilderness Areas. Remote Sensing. 2019; 11(22):2699. https://doi.org/10.3390/rs11222699
Chicago/Turabian StyleFan, Liangxian, Jianjun Zhao, Yeqiao Wang, Zhoupeng Ren, Hongyan Zhang, and Xiaoyi Guo. 2019. "Assessment of Night-Time Lighting for Global Terrestrial Protected and Wilderness Areas" Remote Sensing 11, no. 22: 2699. https://doi.org/10.3390/rs11222699
APA StyleFan, L., Zhao, J., Wang, Y., Ren, Z., Zhang, H., & Guo, X. (2019). Assessment of Night-Time Lighting for Global Terrestrial Protected and Wilderness Areas. Remote Sensing, 11(22), 2699. https://doi.org/10.3390/rs11222699