Urban Land Use and Land Cover Classification Using Multisource Remote Sensing Images and Social Media Data
Abstract
:1. Introduction
2. Related Work
3. Study Area and Data
3.1. Study Area
3.2. Remote Sensing and Social Media Data
3.3. Ground Truth Data
4. Methodology
4.1. Data Preprocessing
4.2. Object-Based Image Analysis
4.3. Feature Selection Using Decision Tree Algorithms
4.4. LULC Classification Using Random Forests
5. Results
5.1. Contribution of Landsat 8 OLI Data to LULC Classification
5.2. Contribution of WeChat Data to LULC Classification
5.3. Contribution of SAR Data to LULC Classification
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.L.; Weng, Q.H.; Wang, Y.P. Land use and land cover change in Guangzhou, China, from 1998 to 2003, based on Landsat TM/ETM+ imagery. Sensors 2007, 7, 1323–1342. [Google Scholar] [CrossRef]
- Torbick, N.; Lusch, D.; Qi, J.; Moore, N.; Olson, J.; Ge, J.L. Developing land use/land cover parameterization for climate–land modelling in East Africa. Int. J. Remote Sens. 2006, 27, 4227–4244. [Google Scholar] [CrossRef]
- Aydinoglu, A.C.; Yomralioglu, T.; Inan, H.I.; Sesli, F.A. Managing land use/cover data harmonized to support land administration and environmental applications in Turkey. Sci. Res. Essays 2010, 5, 275–284. [Google Scholar] [CrossRef]
- Yemefack, M.; Bijker, W.; De Jong, S.M. Investigating relationships between Landsat-7 ETM+ data and spatial segregation of LULC types under shifting agriculture in southern Cameroon. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 96–112. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Wang, Y.F.; Wang, Y.P.; Xi, H.Y. Investigating the Impacts of Landuse-landcover (LULC) Change in the Pearl River Delta Region on Water Quality in the Pearl River Estuary and Hong Kong’s Coast. Remote Sens. 2009, 1, 1055–1064. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. Hum. Policy Dimens. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. Use of impervious surface in urban land-use classification. Remote Sens. Environ. 2002, 102, 146–160. [Google Scholar] [CrossRef]
- Wegmuller, U.; Strozzi, T.; Bitelli, G. Validation of ERS differential SAR interferometry for land subsidence mapping: The Bologna case study. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium, IGARSS’99, Hamburg, Germany, 28 June–2 July 1999; Volume 2, pp. 1131–1133. [Google Scholar]
- Qi, Z.X.; Yeh, A.G.O.; Li, X.; Lin, Z. A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data. Remote Sens. Environ. 2012, 118, 21–39. [Google Scholar] [CrossRef]
- Luo, H.; Lin, L.; Zhu, H.; Kuai, X.; Zhang, Z.; Liu, Y. Land Cover Extraction from High Resolution ZY-3 Satellite Imagery Using Ontology-Based Method. ISPRS Int. J. Geo-Inf. 2016, 5, 31. [Google Scholar] [CrossRef]
- Amarsaikhan, D.; Blotevogel, H.H.; Genderen, J.L.V.; Ganzorig, M.; Gantuya, R.; Nergui, B. Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification. Int. J. Image Data Fusion 2010, 1, 83–97. [Google Scholar] [CrossRef]
- Solberg, A.H.S.; Jain, A.K.; Taxt, T. Multisource classification of remotely sensed data: Fusion of Landsat TM and SAR images. IEEE Trans. Geosci. Remote Sens. 1994, 32, 768–778. [Google Scholar] [CrossRef]
- Ban, Y.F.; Hu, H.T.; Rangel, I.M. Fusion of Quickbird MS and RADARSAT SAR data for urban land-cover mapping: Object-based and knowledge-based approach. Int. J. Remote Sens. 2010, 31, 1391–1410. [Google Scholar] [CrossRef]
- Liu, C.; Song, G. A method of measuring the semantic gap in image retrieval: Using the information theory. In Proceedings of the International Conference on Image Analysis & Signal Processing, Hubei, China, 21–23 October 2011. [Google Scholar] [CrossRef]
- Bahmanyar, R. Measuring the semantic gap using a Communication Channel model. In Proceedings of the IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; pp. 4377–4381. [Google Scholar]
- Pan, Y.; Tian, Y.; Liu, X.; Gu, D.; Hua, G. Urban big data and the development of city intelligence. Engineering 2016, 2, 171–178. [Google Scholar] [CrossRef]
- Hu, T.; Yang, J.; Li, X.; Gong, P. Mapping Urban Land Use by Using Landsat Images and Open Social Data. Remote Sens. 2016, 8, 151. [Google Scholar] [CrossRef]
- Chen, Y.M.; Liu, X.P.; Li, X.; Liu, X.J.; Yao, Y.; Hu, G.H.; Xu, X.C.; Pei, F.S. Delineating urban functional areas with building-level social media data: A dynamic time warping (DTW) distance based k-medoids method. Landsc. Urban Plan. 2017, 160, 48–60. [Google Scholar] [CrossRef]
- Purves, R.; Hollenstein, L. Exploring place through user-generated content: Using Flickr to describe city cores. J. Spat. Inf. Sci. 2010, 1, 21–48. [Google Scholar] [CrossRef]
- Birkin, M.; Harland, K.; Malleson, N. The Classification of Space-Time Behaviour Patterns in a British City from Crowd-Sourced Data. In Proceedings of the International Conference on Computational Science and Its Applications, Ho Chi Minh City, Vietnam, 24–27 June 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 179–192. [Google Scholar]
- Wakamiya, S.; Lee, R.; Sumiya, K. Urban Area Characterization Based on Semantics of Crowd Activities in Twitter. In Proceedings of the International Conference on Geospatial Semantics, Brest, France, 12–13 May 2011; pp. 108–123. [Google Scholar]
- Xu, G.; Zhu, X.; Fu, D.J.; Dong, J.W.; Xiao, X.M. Automatic land cover classification of geo-tagged field photos by deep learning. Environ. Model. Softw. 2017, 91, 127–134. [Google Scholar] [CrossRef]
- Liu, X.P.; He, J.L.; Yao, Y.; Zhang, J.B.; Liang, H.L.; Wang, H.; Hong, Y. Classifying urban land use by integrating remote sensing and social media data. Int. J. Geogr. Inf. Sci. 2017, 31, 1675–1696. [Google Scholar] [CrossRef]
- Guangzhou Statistics Bureau. Available online: http://www.gzstats.gov.cn/ (accessed on 28 February 2018).
- Amitrano, D.; Cecinati, F.; Martino, G.D.; Iodice, A.; Riccio, D.; Ruello, G. Sentinel-1 Multitemporal SAR Products. In Proceedings of the Geoscience & Remote Sensing Symposium, Milan, Italy, 26–31 July 2015. [Google Scholar] [CrossRef]
- Shen, L.F.; Wang, Y.; Zhang, C.; JIANG, D.R.; Li, H. Relationship between built environment of rational pedestrian catchment areas and URT commuting ridership: Evidence from 44 URT stations in Beijing. J. Geogr. Sci. 2018, 73, 2423–2439. (In Chinese) [Google Scholar]
- Wallington, E.D. Field Methods in Remote Sensing. Photogramm. Rec. 2005, 20, 179–180. [Google Scholar] [CrossRef]
- Suresh, G.; Gehrke, R.; Wiatr, T.; Hovenbitzer, M. Synthetic Aperture Radar (Sar) Based Classifiers for Land Applications in Germany. Int. Arch. Photogramm. 2016, 41, 1187–1193. [Google Scholar] [CrossRef]
- Yommy, A.S.; Liu, R.; Wu, S. SAR Image Despeckling Using Refined Lee Filter. In Proceedings of the International Conference on Intelligent Human-machine Systems & Cybernetics, Hangzhou, China, 26–27 August 2015. [Google Scholar] [CrossRef]
- Rahman, M.R.; Saha, S.K. Multi-resolution Segmentation for Object-based Classification and Accuracy Assessment of Land Use/Land Cover Classification using Remotely Sensed Data. J. Indian Soc. Remote Sens. 2008, 36, 189–201. [Google Scholar] [CrossRef]
- Zhou, Y.N.; Feng, L.; Chen, Y.H.; Li, J. Object-Based Land Cover Mapping using Adaptive Scale Segmentation from ZY-3 Satellite images. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 63–66. [Google Scholar]
- Hernandez, I.E.R.; Shi, W.Z. A Random Forests classification method for urban land-use mapping integrating spatial metrics and texture analysis. Int. J. Remote Sens. 2018, 39, 1175–1198. [Google Scholar] [CrossRef]
- Coburn, C.A.; Roberts, A.C.B. A multiscale texture analysis procedure for improved forest stand classification. Int. J. Remote Sens. 2004, 25, 4287–4308. [Google Scholar] [CrossRef]
- Mallinis, G.; Koutsias, N.; Tsakiri-Strati, M.; Karteris, M. Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS J. Photogramm. 2008, 63, 237–250. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 2014, 35, 3440–3458. [Google Scholar] [CrossRef]
- Vassileva, M.; Nascetti, A.; Giuliotonolo, F.; Boccardo, P. Unsupervised flood extent detection from SAR imagery applying shadow filtering from SAR simulated image. In Proceedings of the Geoscience & Remote Sensing Symposium, Milan, Italy, 26–31 July 2015. [Google Scholar]
Data | Time | Spatial Resolution | Number of Image Channels |
---|---|---|---|
ZY-3 | April 14, 2015 | 2 m | 3 (Blue, Green, Red) |
Landsat 8 OLI | October 18, 2015 | 30 m | 7 (Coastal/Aerosol, Blue, Green, Red, NIR, SWIR1, Cirrus) |
Sentinel-1A SAR | June 27, 2015 | 10 m | 2 (VV, VH) |
June 15–21, 2015 | 25 m | 168 (hourly WeChat user density maps) |
LULC Types | Total | Training | Validation | |||
---|---|---|---|---|---|---|
Plots | Pixels | Plots | Pixels | Plots | Pixels | |
Water | 203 | 1,203,589 | 101 | 588,520 | 102 | 615,069 |
Urban village | 182 | 252,273 | 91 | 129,170 | 91 | 123,103 |
Road | 237 | 349,157 | 119 | 174,948 | 118 | 174,209 |
Residential building | 208 | 140,306 | 104 | 67,933 | 104 | 72,373 |
Industrial building | 202 | 131,728 | 101 | 60,303 | 101 | 71,425 |
Greenhouse | 115 | 95,698 | 57 | 50,764 | 58 | 44,934 |
Vegetation | 212 | 663,925 | 106 | 350,264 | 106 | 313,661 |
Educational building | 131 | 193,093 | 65 | 96,773 | 66 | 96,320 |
Commercial building | 132 | 115,849 | 61 | 75,427 | 71 | 40,422 |
Bare land | 201 | 242,854 | 100 | 121,110 | 101 | 121,744 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Qi, Z.; Liu, X.; Niu, N.; Zhang, H. Urban Land Use and Land Cover Classification Using Multisource Remote Sensing Images and Social Media Data. Remote Sens. 2019, 11, 2719. https://doi.org/10.3390/rs11222719
Shi Y, Qi Z, Liu X, Niu N, Zhang H. Urban Land Use and Land Cover Classification Using Multisource Remote Sensing Images and Social Media Data. Remote Sensing. 2019; 11(22):2719. https://doi.org/10.3390/rs11222719
Chicago/Turabian StyleShi, Yan, Zhixin Qi, Xiaoping Liu, Ning Niu, and Hui Zhang. 2019. "Urban Land Use and Land Cover Classification Using Multisource Remote Sensing Images and Social Media Data" Remote Sensing 11, no. 22: 2719. https://doi.org/10.3390/rs11222719
APA StyleShi, Y., Qi, Z., Liu, X., Niu, N., & Zhang, H. (2019). Urban Land Use and Land Cover Classification Using Multisource Remote Sensing Images and Social Media Data. Remote Sensing, 11(22), 2719. https://doi.org/10.3390/rs11222719