Estimation of Secondary Soil Properties by Fusion of Laboratory and On-Line Measured Vis–NIR Spectra
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. On-Line Sensing Platform, Soil Scanning, and Sampling
2.3. Laboratory Optical Scanning and Chemical Analyses
2.4. Spectral Pre-Processing and Charecterization
2.5. Datasets Assigning, Model Building, and Quality Assessment
3. Results
3.1. Laboratory Measured Soil Data
3.2. Discrepancy between Laboratory and On-Line Scanned Vis–NIR Spectra
3.3. PLSR Coefficients
3.4. Quality of Prediction Results
3.5. Influences of Fusion Ratio on On-Line Prediction Quality
4. Discussions
5. Conclusions
- For a particular soil sample, laboratory and on-line spectra are rarely identical and spectra pre-treatments can reduce the discrepancies to some extent but cannot remove them completely. Therefore, the laboratory scanned spectra-based calibration models predict on-line soil properties with low accuracy.
- Inclusion of on-line collected spectra in the spectra set is necessary, which has resulted in improved prediction accuracy. The degree of improvement was proportional with the ratio of on-line spectra added. The real-time calibration performed almost equally good as the hybrid-2 model (except for pH and K) and hybrid-3 model (for all the soil properties investigated). Furthermore, the three hybrid models outperformed the standard calibration. Thus, either the real-time, the hybrid-2 (excluding pH and Na) or the hybrid-3 models should be used for successful on-line prediction of the secondary soil properties considered in this study.
- The current study identified key absorption wavelengths significantly contributing to the predictions of soil pH, K, Mg, Ca, and Na. These wavelengths are associated with the absorption band of the blue colour, second overtone of O–H absorption, aromatic C–H, and amine (N–H) absorptions, depending on the soil property.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adamchuk, V.I.; Viscarra Rossel, R.A. Development of On-the-Go Proximal Soil Sensor Systems. In Proximal Soil Sensing; Springer: Dordrecht, The Netherlands, 2010; pp. 15–28. ISBN 9789048188598. [Google Scholar]
- Wang, D.; Chakraborty, S.; Weindorf, D.C.; Li, B.; Sharma, A.; Paul, S.; Ali, M.N. Synthesized use of VisNIR DRS and PXRF for soil characterization: Total carbon and total nitrogen. Geoderma 2015, 243–244, 157–167. [Google Scholar] [CrossRef]
- McDowell, M.L.; Bruland, G.L.; Deenik, J.L.; Grunwald, S.; Knox, N.M. Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy. Geoderma 2012, 189–190, 312–320. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; McBratney, A.B. Soil chemical analytical accuracy and costs: Implications from precision agriculture. Aust. J. Exp. Agric. 1998, 38, 765–775. [Google Scholar] [CrossRef]
- Ackerson, J.P.; Morgan, C.L.S.; Ge, Y. Penetrometer-mounted VisNIR spectroscopy: Application of EPO-PLS to in situ VisNIR spectra. Geoderma 2017, 286, 131–138. [Google Scholar] [CrossRef]
- Ackerson, J.P.; Demattê, J.A.M.; Morgan, C.L.S. Predicting clay content on field-moist intact tropical soils using a dried, ground VisNIR library with external parameter orthogonalization. Geoderma 2015, 259–260, 196–204. [Google Scholar] [CrossRef]
- Chen, C.; Viscarra Rossel, R.A. Digitally mapping the information content of visible–near infrared spectra of surficial Australian soils. Remote Sens. Environ. 2011, 115, 1443–1455. [Google Scholar] [CrossRef]
- Kuang, B.; Mahmood, H.S.; Quraishi, M.Z.; Hoogmoed, W.B.; Mouazen, A.M.; van Henten, E.J. Sensing soil properties in the laboratory, in situ, and on-line. A review. Adv. Agron. 2012, 114, 155–223. [Google Scholar] [CrossRef]
- Nawar, S.; Mouazen, A.M. On-line vis-NIR spectroscopy prediction of soil organic carbon using machine learning. Soil Tillage Res. 2019, 190, 120–127. [Google Scholar] [CrossRef]
- Maleki, M.R.; Mouazen, A.M.; De Ketelaere, B.; Ramon, H.; De Baerdemaeker, J. On-the-go variable-rate phosphorus fertilisation based on a visible and near-infrared soil sensor. Biosyst. Eng. 2008, 99, 35–46. [Google Scholar] [CrossRef]
- Tekin, Y.; Tumsavaş, Z.; Ulusoy, Y.; Mouazen, A.M. On-line Vis-Nir sensor determination of soil variations of sodium, potassium and magnesium. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2016; Volume 41, p. 012011. [Google Scholar]
- Nawar, S.; Mouazen, A.M. Optimal sample selection for measurement of soil organic carbon using on-line vis-NIR spectroscopy. Comput. Electron. Agric. 2018, 151, 469–477. [Google Scholar] [CrossRef]
- Shepherd, K.D.; Walsh, M.G. Development of Reflectance Spectral Libraries for Characterization of Soil Properties. Soil Sci. Soc. Am. J. 2002, 66, 988. [Google Scholar] [CrossRef]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and Near Infrared Spectroscopy in Soil Science. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2010; Volume 107, pp. 163–215. [Google Scholar]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties. Soil Sci. Soc. Am. J. 2001, 65, 480. [Google Scholar] [CrossRef]
- Marín-González, O.; Kuang, B.; Quraishi, M.Z.; Munóz-García, M.Á.; Mouazen, A.M. On-line measurement of soil properties without direct spectral response in near infrared spectral range. Soil Tillage Res. 2013, 132, 21–29. [Google Scholar] [CrossRef]
- Dunn, B.W.; Batten, G.D.; Beecher, H.G.; Ciavarella, S. The potential of near-infrared reflectance spectroscopy for soil analysis—A case study from the Riverine Plain of south-eastern Australia. Aust. J. Exp. Agric. 2002, 42, 607. [Google Scholar] [CrossRef]
- Islam, K.I.; Khan, A.; Islam, T. Correlation between Atmospheric Temperature and Soil Temperature: A Case Study for Dhaka, Bangladesh. Atmos. Clim. Sci. 2015, 5, 200–208. [Google Scholar] [CrossRef]
- Mouazen, A.M.; De Baerdemaeker, J.; Ramon, H. Effect of Wavelength Range on the Measurement Accuracy of Some Selected Soil Constituents Using Visual-Near Infrared Spectroscopy. J. Near Infrared Spectrosc. 2006, 14, 189–199. [Google Scholar] [CrossRef]
- Zornoza, R.; Guerrero, C.; Mataix-Solera, J.; Scow, K.M.; Arcenegui, V.; Mataix-Beneyto, J. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. Soil Biol. Biochem. 2008, 40, 1923–1930. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Maleki, M.R.; De Baerdemaeker, J.; Ramon, H. On-line measurement of some selected soil properties using a VIS-NIR sensor. Soil Tillage Res. 2007, 93, 13–27. [Google Scholar] [CrossRef]
- Nawar, S.; Mouazen, A.M. Predictive performance of mobile vis-near infrared spectroscopy for key soil properties at different geographical scales by using spiking and data mining techniques. Catena 2017, 151, 118–129. [Google Scholar] [CrossRef]
- Chang, C.-W.; Laird, D.A.; Hurburgh, C.R., Jr. Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties. Soil Sci. 2005, 170, 244–255. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Karoui, R.; De Baerdemaeker, J.; Ramon, H. Characterization of soil water content using measured visible and near infrared spectra. Soil Sci. Soc. Am. J. 2006, 70, 1295–1302. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Maleki, M.R.; Cockx, L.; Van Meirvenne, M.; Van Holm, L.H.J.; Merckx, R.; De Baerdemaeker, J.; Ramon, H. Optimum three-point linkage set up for improving the quality of soil spectra and the accuracy of soil phosphorus measured using an on-line visible and near infrared sensor. Soil Tillage Res. 2009, 103, 144–152. [Google Scholar] [CrossRef]
- Tekin, Y.; Kuang, B.; Mouazen, A.M. Potential of On-Line Visible and Near Infrared Spectroscopy for Measurement of pH for Deriving Variable Rate Lime Recommendations. Sensors 2013, 13, 10177–10190. [Google Scholar] [CrossRef] [PubMed]
- Shamal, S.A.M.; Alhwaimel, S.A.; Mouazen, A.M. Application of an on-line sensor to map soil packing density for site specific cultivation. Soil Tillage Res. 2016, 162, 78–86. [Google Scholar] [CrossRef]
- Franceschini, M.H.D.; Demattê, J.A.M.; Kooistra, L.; Bartholomeus, H.; Rizzo, R.; Fongaro, C.T.; Molin, J.P. Effects of external factors on soil reflectance measured on-the-go and assessment of potential spectral correction through orthogonalisation and standardisation procedures. Soil Tillage Res. 2018, 177, 19–36. [Google Scholar] [CrossRef]
- Indahl, U.G. The O-PLS methodology for orthogonal signal correction-is it correcting or confusing? J. Chemom. 2017, 1–14. [Google Scholar] [CrossRef]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Mouazen, A.M. Soil Survey Device 2006. In International Publication, Published under the Patent Cooperation Treaty (PCT); World Intellectual Property Organization, International Bureau: Brussels, Belgium, 2006. [Google Scholar]
- Mukhopadhyay, S.; Maiti, S.K. Techniques for Quantative Evaluation of Mine Site Reclamation Success. In Bio-Geotechnologies for Mine Site Rehabilitation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 415–438. ISBN 9780128129876. [Google Scholar]
- Mouazen, A.M.; Saeys, W.; Xing, J.; De Baerdemaeker, J.; Ramon, H. Near infrared spectroscopy for agricultural materials: An instrument comparison. J. Near Infrared Spectrosc. 2005, 13, 87–97. [Google Scholar] [CrossRef]
- Stevens, A.; Ramirez Lopez, L. An Introduction to the Prospectr Package. Available online: https://cran.r-project.org/web/packages/prospectr/vignettes/prospectr-intro.pdf (accessed on 1 January 2019).
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Norris, K.H. Understanding and Correcting the Factors Which Affect Diffuse Transmittance Spectra. NIR News 2001, 12, 6–9. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Harman, H.H. Modern Factor Analysis. J. R. Stat. Soc. Ser. A 2006, 131, 615. [Google Scholar] [CrossRef]
- Kennard, R.W.; Stone, L.A. Computer Aided Design of Experiments. Technometrics 1969, 11, 137–148. [Google Scholar] [CrossRef]
- Mevik, B.H.; Wehrens, R. The pls Package: Principal Component and Partial Least Squares Regression in R. J. Stat. Softw. 2007, 18, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Kuang, B.; Mouazen, A.M. Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms. Eur. J. Soil Sci. 2011, 62, 629–636. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.-M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Al-Asadi, R.A. Influence of soil moisture content on assessment of bulk density with combined frequency domain reflectometry and visible and near infrared spectroscopy under semi field conditions. Soil Tillage Res. 2018, 176, 95–103. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Kuang, B.; De Baerdemaeker, J.; Ramon, H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma 2010, 158, 23–31. [Google Scholar] [CrossRef]
- Slaughter, D.C.; Pelletier, M.G.; Upadhyaya, S.K. Sensing soil moisture using NIR spectroscopy. Appl. Eng. Agric. 2013, 17, 241. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhang, S. Near-infrared spectroscopy technology for soil nutrients detection based on LS-SVM. In IFIP Advances in Information and Communication Technology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 368 AICT, pp. 325–335. [Google Scholar]
- Kodaira, M.; Shibusawa, S. Using a mobile real-time soil visible-near infrared sensor for high resolution soil property mapping. Geoderma 2013. [Google Scholar] [CrossRef]
- Kweon, G.; Lund, E.; Maxton, C. Soil organic matter and cation-exchange capacity sensing with on-the-go electrical conductivity and optical sensors. Geoderma 2013, 199, 80–89. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, X.; Wang, C.; Li, Y.; Shi, R. Predicting Soil Salinity with Vis–NIR Spectra after Removing the Effects of Soil Moisture Using External Parameter Orthogonalization. PLoS ONE 2015, 10, e0140688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, W.; Viscarra Rossel, R.A.; Shi, Z. Accounting for the effects of water and the environment on proximally sensed vis-NIR soil spectra and their calibrations. Eur. J. Soil Sci. 2015, 66, 555–565. [Google Scholar] [CrossRef]
Field | Location | Period (2018) | Area (ha) | Number of Samples | Crop Type | Soil Texture | Average MC (%) | Average OC (%) |
---|---|---|---|---|---|---|---|---|
Bottelare | Melle | November | 5 | 25 | Maize | Light loam to light clay | 14.64 | 1.60 |
Thierry | Moeskroen | August | 3 | 13 | Wheat | Light sandy to sandy loam | 15.56 | 1.66 |
Watermachine | Veurne | August | 6 | 19 | Wheat | Heavy clay | 19.86 | 1.35 |
Gingelomse | Landen | December | 11 | 38 | Barley | Light to heavy loam | 22.79 | 1.34 |
Kattestraat | Landen | December | 5 | 20 | Sugar beet | Light to heavy loam | 23.02 | 1.38 |
Dal | Landen | August | 6 | 23 | Barley | Light to heavy loam | 8.75 | 1.47 |
Pre-Processing | Pre-Processing Order of Sequences | Soil Properties |
---|---|---|
Set-1 | Moving average (w = 19) > SNV > Smoothing (SG) (w = 9; p = 2; m = 0) | pH, K |
Set-2 | Moving average (w = 19) > SNV de-trending > First derivative (SG) (w = 9; p = 2; m = 1) > Smoothing (SG) (w = 9; p = 2; m = 0) | Mg |
Set-3 | Moving average (w = 19) > Normalization (0–1) | Ca |
Set-4 | Moving average (w = 19) > Normalization (0–1) > GS derivative (GSD) (m = 1; w = 11; s = 5) > Smoothing (SG) (w = 11; p = 2; m = 0) | Na |
Dataset | Calibration Datasets (72%) | ||||
---|---|---|---|---|---|
Types of Calibration | Standard | Hybrid-1 | Hybrid-2 | Hybrid-3 | Real-Time |
Laboratory measured samples | 100 | 75 | 50 | 25 | 0 |
On-line measured samples | 0 | 25 | 50 | 75 | 100 |
Total samples in calibration * | 100 | 100 | 100 | 100 | 100 |
% hybridization with on-line samples | 0% | 25% | 50% | 75% | 100% |
Prediction dataset (28%) | |||||
Samples in the prediction set | 38 |
Soil Property | Calibration Type | Prediction | |||
---|---|---|---|---|---|
R2 | RMSEP | RPD | RPIQ | ||
pH | Standard | 0.45 | 0.56 | 1.37 | 1.56 |
Hybrid-1 | 0.50 | 0.54 | 1.43 | 1.63 | |
Hybrid-2 | 0.57 | 0.50 | 1.54 | 1.76 | |
Hybrid-3 | 0.73 | 0.39 | 1.96 | 2.24 | |
Real-time | 0.74 | 0.39 | 1.97 | 2.25 | |
K | Standard | 0.25 | 8.75 | 1.17 | 1.57 |
Hybrid-1 | 0.33 | 8.30 | 1.23 | 1.66 | |
Hybrid-2 | 0.58 | 6.60 | 1.56 | 2.08 | |
Hybrid-3 | 0.53 | 6.93 | 1.48 | 1.98 | |
Real-time | 0.54 | 6.85 | 1.50 | 2.00 | |
Mg | Standard | 0.48 | 10.42 | 1.41 | 0.55 |
Hybrid-1 | 0.68 | 8.15 | 1.80 | 0.71 | |
Hybrid-2 | 0.81 | 6.29 | 2.33 | 0.91 | |
Hybrid-3 | 0.81 | 6.25 | 2.35 | 0.92 | |
Real-time | 0.81 | 6.38 | 2.30 | 0.90 | |
Ca | Standard | 0.13 | 809.13 | 1.09 | 0.23 |
Hybrid-1 | 0.69 | 483.81 | 1.82 | 0.39 | |
Hybrid-2 | 0.76 | 428.91 | 2.05 | 0.44 | |
Hybrid-3 | 0.77 | 412.23 | 2.13 | 0.45 | |
Real-time | 0.75 | 436.46 | 2.02 | 0.43 | |
Na | Standard | 0.37 | 4.23 | 1.28 | 1.06 |
Hybrid-1 | 0.26 | 4.58 | 1.15 | 0.98 | |
Hybrid-2 | 0.54 | 3.62 | 1.49 | 1.24 | |
Hybrid-3 | 0.69 | 2.96 | 1.83 | 1.51 | |
Real-time | 0.65 | 3.14 | 1.72 | 1.43 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Munnaf, M.; Nawar, S.; Mouazen, A.M. Estimation of Secondary Soil Properties by Fusion of Laboratory and On-Line Measured Vis–NIR Spectra. Remote Sens. 2019, 11, 2819. https://doi.org/10.3390/rs11232819
Abdul Munnaf M, Nawar S, Mouazen AM. Estimation of Secondary Soil Properties by Fusion of Laboratory and On-Line Measured Vis–NIR Spectra. Remote Sensing. 2019; 11(23):2819. https://doi.org/10.3390/rs11232819
Chicago/Turabian StyleAbdul Munnaf, Muhammad, Said Nawar, and Abdul Mounem Mouazen. 2019. "Estimation of Secondary Soil Properties by Fusion of Laboratory and On-Line Measured Vis–NIR Spectra" Remote Sensing 11, no. 23: 2819. https://doi.org/10.3390/rs11232819
APA StyleAbdul Munnaf, M., Nawar, S., & Mouazen, A. M. (2019). Estimation of Secondary Soil Properties by Fusion of Laboratory and On-Line Measured Vis–NIR Spectra. Remote Sensing, 11(23), 2819. https://doi.org/10.3390/rs11232819