The Impact of Artificial Wetland Expansion on Local Temperature in the Growing Season—the Case Study of the Sanjiang Plain, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Processing and Method
- Regional statistical mean LST difference between rainfed farmland and paddy fields. The difference in LSTD and LSTN between rainfed farmland and paddy fields for each month (j) were calculated by
- LST difference for the whole Sanjiang Plain between the end (2011–2015) and start (2001–2005) periods of our study period. Though this method involved climatology influences and interannual variation, it was the most intuitive way to illustrate the LST change corresponding to paddy field expansion. The albedo and LE changes were also obtained this way. Here, a t-test was used to verify the change significance of the LST, albedo, and LE for rainfed farmland, paddy fields, and change pixels between the two time periods.
- Time series analysis. Liu et al. (2019) have illustrated a warming trend in the Sanjiang Plain for the period the 1950s to 2015 [27]. To eliminate the impacts of climate warming, LST, albedo, and LE were rescaled to 0–1 before we conducted our time series analysis.
3. Results
3.1. Impact of Land Use Change on LST, Albedo, and LE
3.2. Albedo and LE Responses under Different Land Use Patterns
3.3. LST, Albedo and LE Change Trends During the Period 2001–2015
3.4. Relationship between LST and Land Surface Parameters
4. Discussion
4.1. Advantages and Uncertainties of Detecting Regional Climate Responses Using Remote Seensing
4.2. The Driving Mechanisms of Regional Temperature Change
4.3. Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, R.; Pielke, R.A.; Hubbard, K.G. Land use/land cover change and its impacts on climate. Glob. Planet Chang. 2006, 54, Vii. [Google Scholar] [CrossRef]
- Pielke, R.A.; Marland, G.; Betts, R.A.; Chase, T.N.; Eastman, J.L.; Niles, J.O.; Niyogi, D.D.S.; Running, S.W. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. R. Soc. A 2002, 360, 1705–1719. [Google Scholar] [CrossRef] [PubMed]
- Kueppers, L.M.; Snyder, M.A.; Sloan, L.C.; Cayan, D.; Jin, J.; Kanamaru, H.; Kanamitsu, M.; Miller, N.L.; Tyree, M.; Due, H.; et al. Seasonal temperature responses to land-use change in the western United States. Glob. Planet Chang. 2008, 60, 250–264. [Google Scholar] [CrossRef]
- Brovkin, V.; Boysen, L.; Arora, V.K.; Boisier, J.P.; Cadule, P.; Chini, L.; Claussen, M.; Friedlingstein, P.; Gayler, V.; van den Hurk, B.J.J.M.; et al. Effect of Anthropogenic Land-Use and Land-Cover Changes on Climate and Land Carbon Storage in CMIP5 Projections for the Twenty-First Century. J. Clim. 2013, 26, 6859–6881. [Google Scholar] [CrossRef]
- Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. The importance of land-cover change in simulating future climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, R.; Pielke, R.A.; Hubbard, K.G.; Niyogi, D.; Dirmeyer, P.A.; McAlpine, C.; Carleton, A.M.; Hale, R.; Gameda, S.; Beltran-Przekurat, A.; et al. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 2014, 34, 929–953. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [Green Version]
- Dirmeyer, P.A.; Niyogi, D.; de Noblet-Ducoudre, N.; Dickinson, R.E.; Snyder, P.K. Impacts of land use change on climate. Int. J. Climatol. 2010, 30, 1905–1907. [Google Scholar] [CrossRef] [Green Version]
- Nuclear Regulatory Commission (NRC). Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties; The National Academies Press: Washington, DC, USA, 2005; Volume 208. [Google Scholar]
- Li, Y.; De Noblet-Ducoudre, N.; Davin, E.L.; Motesharrei, S.; Zeng, N.; Li, S.C.; Kalnay, E. The role of spatial scale and background climate in the latitudinal temperature response to deforestation. Earth Syst. Dyn. 2016, 7, 167–181. [Google Scholar] [CrossRef] [Green Version]
- Nonomura, A.; Kitahara, M.; Masuda, T. Impact of land use and land cover changes on the ambient temperature in a middle scale city, Takamatsu, in Southwest Japan. J. Environ. Manag. 2009, 90, 3297–3304. [Google Scholar] [CrossRef] [PubMed]
- Fall, S.; Niyogi, D.; Gluhovsky, A.; Pielke, R.A.; Kalnay, E.; Rochon, G. Impacts of land use land cover on temperature trends over the continental United States: Assessment using the North American Regional Reanalysis. Int. J. Climatol. 2010, 30, 1980–1993. [Google Scholar] [CrossRef] [Green Version]
- Lee, X.; Goulden, M.L.; Hollinger, D.Y.; Barr, A.; Black, T.A.; Bohrer, G.; Bracho, R.; Drake, B.; Goldstein, A.; Gu, L.H.; et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 2011, 479, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Lejeune, Q.; Davin, E.L.; Guillod, B.P.; Seneviratne, S.I. Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Clim. Dyn. 2015, 44, 2769–2786. [Google Scholar] [CrossRef] [Green Version]
- Manoharan, V.S.; Welch, R.M.; Lawton, R.O. Impact of deforestation on regional surface temperatures and moisture in the Maya lowlands of Guatemala. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Yu, L.X.; Zhang, S.W.; Tang, J.M.; Liu, T.X.; Bu, K.; Yan, F.Q.; Yang, C.B.; Yang, J.C. The effect of deforestation on the regional temperature in Northeastern China. Theor. Appl. Climatol. 2015, 120, 761–771. [Google Scholar] [CrossRef]
- Kustas, W.P.; Albertson, J.D.; Kustas, W.P.; Jackson, T.J.; Prueger, J.H.; Hatfield, J.L.; Anderson, M.C. Remote sensing field experiments evaluate retrieval algorithms and land-atmosphere modeling. EOS 2003, 84, 485–493. [Google Scholar] [CrossRef]
- Cleugh, H.A.; Raupach, M.R.; Briggs, P.R.; Coppin, P.A. Regional-scale heat and water vapour fluxes in an agricultural landscape: An evaluation of CBL budget methods at OASIS. Bound. Layer Meteorol. 2004, 110, 99–137. [Google Scholar] [CrossRef]
- Stohlgren, T.J.; Chase, T.N.; Pielke, R.A.; Kittel, T.G.F.; Baron, J.S. Evidence that local land use practices influence regional climate, vegetation, and stream flow patterns in adjacent natural areas. Glob. Chang. Biol. 1998, 4, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Chase, T.N.; Pielke, R.A.; Kittel, T.G.F.; Zhao, M.; Pitman, A.J.; Running, S.W.; Nemani, R.R. Relative climatic effects of landcover change and elevated carbon dioxide combined with aerosols: A comparison of model results and observations. J. Geophys. Res. Atmos. 2001, 106, 31685–31691. [Google Scholar] [CrossRef] [Green Version]
- Avila, F.B.; Pitman, A.J.; Donat, M.G.; Alexander, L.V.; Abramowitz, G. Climate model simulated changes in temperature extremes due to land cover change. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.K. The impact of desertification in the Mongolian and the Inner Mongolian grassland on the regional climate. J. Clim. 1996, 9, 2173–2189. [Google Scholar] [CrossRef]
- Davin, E.L.; de Noblet-Ducoudré, N. Climatic Impact of Global-Scale Deforestation: Radiative versus Nonradiative Processes. J. Clim. 2010, 23, 97–112. [Google Scholar] [CrossRef]
- Kueppers, L.M.; Snyder, M.A.; Sloan, L.C. Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.X.; Yu, L.X.; Zhang, S.W. Impacts of Wetland Reclamation and Paddy Field Expansion on Observed Local Temperature Trends in the Sanjiang Plain of China. J. Geophys. Res. Earth 2019, 124, 414–426. [Google Scholar] [CrossRef]
- Puma, M.J.; Cook, B.I. Effects of irrigation on global climate during the 20th century. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Lim, Y.K.; Cai, M.; Kalnay, E.; Zhou, L.M. Observational evidence of sensitivity of surface climate changes to land types and urbanization. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Mohan, M.; Kandya, A. Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of tropical urban airshed of India using remote sensing data. Sci. Total Environ. 2015, 506, 453–465. [Google Scholar] [CrossRef]
- Ren, G.Y.; Zhou, Y.Q.; Chu, Z.Y.; Zhou, J.X.; Zhang, A.Y.; Guo, J.; Liu, X.F. Urbanization effects on observed surface air temperature trends in north China. J. Clim. 2008, 21, 1333–1348. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.M.; Chen, W.W.; Gong, X.L.; Hong, W.; Wang, Y.Y. The cold-humid effect of perennially flooded marshes on clear days in the Sanjiang Plain of Northeast China. J. Food Agric. Environ. 2013, 11, 835–840. [Google Scholar]
- Xue, Z.S.; Hou, G.L.; Zhang, Z.S.; Lyu, X.G.; Jiang, M.; Zou, Y.C.; Shen, X.J.; Wang, J.; Liu, X.H. Quantifying the cooling-effects of urban and peri-urban wetlands using remote sensing data: Case study of cities of Northeast China. Landsc. Urban Plan. 2019, 182, 92–100. [Google Scholar] [CrossRef]
- Liu, Y.; Sheng, L.X.; Liu, J.P. Impact of wetland change on local climate in semi-arid zone of Northeast China. Chin. Geogr. Sci. 2015, 25, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Muro, J.; Strauch, A.; Heinemann, S.; Steinbach, S.; Thonfeld, F.; Waske, B.; Diekkruger, B. Land surface temperature trends as indicator of land use changes in wetlands. Int. J. Appl. Earth Obs. 2018, 70, 62–71. [Google Scholar] [CrossRef]
- Gao, J.Q.; Lu, X.G.; Li, Z.F. Study on Cold-Humid Effects of Wetland in Sanjiang Plain. J. Soil Water Conserv. 2002, 16, 149–151. (In Chinese) [Google Scholar]
- Zhang, Y.; Lu, X.G.; Ni, J. Cold-humid ecological effects of the Sanjiang Plain. Ecol. Environ. 2004, 13, 37–39. (In Chinese) [Google Scholar]
- Bai, J.H.; Lu, Q.Q.; Zhao, Q.Q.; Wang, J.J.; Ouyang, H. Effects of Alpine Wetland Landscapes on Regional Climate on the Zoige Plateau of China. Adv. Meteorol. 2013, 2013. [Google Scholar] [CrossRef]
- Liang, S.L.; Wang, K.C.; Zhang, X.T.; Wild, M. Review on Estimation of Land Surface Radiation and Energy Budgets From Ground Measurement, Remote Sensing and Model Simulations. IEEE J. Stars 2010, 3, 225–240. [Google Scholar] [CrossRef]
- Schneider, N.; Eugster, W. Climatic impacts of historical wetland drainage in Switzerland. Clim. Chang. 2007, 80, 301–321. [Google Scholar] [CrossRef] [Green Version]
- Guo, A.H.; Wang, L.N.; Li, F.X. A Numerical Experiment Study of the Effects of Wetlands Shrinkage on Regional Climate in the ”Three-River Headwaters” Region. Clim. Environ. Res. 2010, 15, 743–755. (In Chinese) [Google Scholar]
- Thiery, W.; Davin, E.L.; Panitz, H.J.; Demuzere, M.; Lhermitte, S.; van Lipzig, N. The Impact of the African Great Lakes on the Regional Climate. J. Clim. 2015, 28, 4061–4085. [Google Scholar] [CrossRef]
- Pitman, A.J.; de Noblet-Ducoudré, N.; Cruz, F.T.; Davin, E.L.; Bonan, G.B.; Brovkin, V.; Claussen, M.; Delire, C.; Ganzeveld, L.; Gayler, V.; et al. Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.S.; Piao, S.L.; Zeng, Z.Z.; Ciais, P.; Zeng, H. Afforestation in china cools local land surface temperature. Proc. Natl. Acad. Sci. USA 2014, 111, 2915–2919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, F.Q.; Yu, L.X.; Yang, C.B.; Zhang, S.W. Paddy Field Expansion and Aggregation since the Mid-1950s in a Cold Region and Its Possible Causes. Remote Sens. (Basel) 2016, 10, 384. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.X.; Yu, L.X.; Zhang, S.W. Land Surface Temperature Response to Irrigated Paddy Field Expansion: A Case Study of Semi-arid Western Jilin Province, China. Sci. Rep. UK 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.X.; Yu, L.X.; Bu, K.; Yan, F.Q.; Zhang, S.W. Seasonal Local Temperature Responses to Paddy Field Expansion from Rain-Fed Farmland in the Cold and Humid Sanjiang Plain of China. Remote Sens. (Basel) 2018, 10, 2009. [Google Scholar] [CrossRef] [Green Version]
- Siebert, S.; Doll, P.; Hoogeveen, J.; Faures, J.M.; Frenken, K.; Feick, S. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 2005, 9, 535–547. [Google Scholar] [CrossRef]
- Potter, P.; Ramankutty, N.; Bennett, E.M.; Donner, S.D. Characterizing the Spatial Patterns of Global Fertilizer Application and Manure Production. Earth Interact. 2010, 14. [Google Scholar] [CrossRef]
- Mao, D.H.; Wang, Z.M.; Wu, J.G.; Wu, B.F.; Zeng, Y.; Song, K.S.; Yi, K.P.; Luo, L. China’s wetlands loss to urban expansion. Land Degrad. Dev. 2018, 29, 2644–2657. [Google Scholar] [CrossRef]
- Mao, D.H.; Luo, L.; Wang, Z.M.; Wilson, M.C.; Zeng, Y.; Wu, B.F.; Wu, J.G. Conversions between natural wetlands and farmland in China: A multiscale geospatial analysis. Sci. Total Environ. 2018, 634, 550–560. [Google Scholar] [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid V006. 2015. Available online: https://doi.org/10.5067/MODIS/MOD11A2.006. (accessed on 12 November 2019).
- Schaaf, C.; Wang, Z. MCD43A3 MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global-500 m V006. 2015. Available online: https://doi.org/10.5067/MODIS/MCD43A3.006. (accessed on 12 November 2019).
- Running, S.; Mu, Q.; Zhao, M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006. 2017. Available online: https://doi.org/10.5067/MODIS/MOD16A2.006. (accessed on 12 November 2019).
- Liang, S.L.; Kustas, W.; Schaepman-Strub, G.; Li, X.W. Impacts of Climate Change and Land Use Changes on Land Surface Radiation and Energy Budgets. IEEE J. Stars 2010, 3, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Bright, R.M.; Davin, E.; O’Halloran, T.; Pongratz, J.; Zhao, K.G.; Cescatti, A. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Chang. 2017, 7, 296–305. [Google Scholar] [CrossRef]
- McNider, R.T.; Lapenta, W.M.; Biazar, A.P.; Jedlovec, G.J.; Suggs, R.J.; Pleim, J. Retrieval of model grid-scale heat capacity using geostationary satellite products. Part I: First case-study application. J. Appl. Meteorol. 2005, 44, 1346–1360. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.Z.; McNider, R.T.; Singh, M.P.; England, D.E.; Friedman, M.J.; Lapenta, W.M.; Norris, W.B. On the behavior of the stable boundary layer and the role of initial conditions. Pure Appl. Geophys. 2005, 162, 1811–1829. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 2013, 91, 332–344. [Google Scholar] [CrossRef]
- Pongratz, J.; Reick, C.H.; Raddatz, T.; Claussen, M. Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Pinty, B.; Taberner, M.; Haemmerle, V.R.; Paradise, S.R.; Vermote, E.; Verstraete, M.M.; Gobron, N.; Widlowski, J.L. Biogeophysical effects of land use on climate: Model simulations of radiative forcing and large-scale temperature changes. J. Clim. 2011, 24, 4769. [Google Scholar] [CrossRef]
- Findell, K.L.; Pitman, A.J.; England, M.H.; Pegion, P.J. Regional and Global Impacts of Land Cover Change and Sea Surface Temperature Anomalies. J. Clim. 2009, 22, 3248–3269. [Google Scholar] [CrossRef]
- Pielke, R.A.; Adegoke, J.; Beltran-Przekurat, A.; Hiemstra, C.A.; Lin, J.; Nair, U.S.; Niyogi, D.; Nobis, T.E. An overview of regional land-use and land-cover impacts on rainfall. Tellus B 2007, 59, 587–601. [Google Scholar] [CrossRef]
- Pielke, R.A. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys. 2001, 39, 151–177. [Google Scholar] [CrossRef]
- Pielke, R.A.; Avissar, R. Influence of Landscape Structure on Local and Regional Climate. Landsc. Ecol. 1990, 4, 133–155. [Google Scholar] [CrossRef]
- Rabin, R.M.; Stadler, S.; Wetzel, P.J.; Stensrud, D.J.; Gregory, M. Observed Effects of Landscape Variability on Convective Clouds. Bull. Am. Meteorol. Soc. 1990, 71, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.B. Potential impacts of human-induced land cover change on East Asia monsoon. Glob. Planet Chang. 2003, 37, 219–229. [Google Scholar] [CrossRef]
- Wang, J.F.; Chagnon, F.J.F.; Williams, E.R.; Betts, A.K.; Renno, N.O.; Machado, L.A.T.; Bisht, G.; Knox, R.; Brase, R.L. Impact of deforestation in the Amazon basin on cloud climatology. Proc. Natl. Acad. Sci. USA 2009, 106, 3670–3674. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.M.; Wang, Z.M.; Wang, C.; Mao, D.H.; Zhang, Y.Z. A New Vegetation Index to Detect Periodically Submerged Mangrove Forest Using Single-Tide Sentinel-2 Imagery. Remote Sens-Basel 2019, 11, 2043. [Google Scholar] [CrossRef] [Green Version]
Month | May | June | July | August | September |
---|---|---|---|---|---|
∆LSTD | 6.00 | 6.59 | 2.69 | 0.99 | 1.55 |
∆LSTN | –2.76 | –2.40 | –1.00 | –0.74 | –0.26 |
∆LST | 1.62 | 2.10 | 0.85 | 0.13 | 0.65 |
DTR_R | 21.35 | 17.69 | 9.27 | 8.09 | 12.10 |
DTR_P | 12.58 | 8.69 | 5.58 | 6.36 | 10.29 |
Land Use State | Day-Time LST Changes in May–Jun | Night-Time LST Changes in May–Jun | Day-Time LST Changes in Jul–Sep | Night-Time LST Changes in Jul–Sep |
---|---|---|---|---|
Rainfed farmland | −0.46 ± 1.17 ** | 1.05 ± 0.42 ** | −0.78 ± 0.79 ** | 1.21 ± 0.29 ** |
Paddy fields | −0.32 ± 1.12 | 1.51 ± 0.72 ** | 0.53 ± 0.49 | 0.96 ± 0.36 ** |
Rainfed farmland Changes to paddy fields | −4.23 ± 1.64 ** | 3.92 ± 1.88 ** | −0.88 ± 0.83 ** | 1.75 ± 0.53 ** |
Land Use State | Albedo Changes in May–Jun | Albedo Changes in Jul–Sep | LE (108 J/d/m2) Changes in May–Jun | LE (108 J/d/m2) Changes in Jul–Sep |
---|---|---|---|---|
Rainfed farmland | −0.006 ± 0.008 ** | 0.011 ± 0.007 ** | 0.013 ± 0.006 ** | 0.013 ± 0.010 ** |
Paddy fields | −0.008 ± 0.009 ** | 0.011 ± 0.008 ** | 0.015 ± 0.006 ** | 0.003 ± 0.009 ** |
Rainfed farmland to paddy fields | −0.037 ± 0.013 ** | 0.015 ± 0.008 ** | 0.016 ± 0.006 ** | 0.010 ± 0.009 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Liu, T. The Impact of Artificial Wetland Expansion on Local Temperature in the Growing Season—the Case Study of the Sanjiang Plain, China. Remote Sens. 2019, 11, 2915. https://doi.org/10.3390/rs11242915
Yu L, Liu T. The Impact of Artificial Wetland Expansion on Local Temperature in the Growing Season—the Case Study of the Sanjiang Plain, China. Remote Sensing. 2019; 11(24):2915. https://doi.org/10.3390/rs11242915
Chicago/Turabian StyleYu, Lingxue, and Tingxiang Liu. 2019. "The Impact of Artificial Wetland Expansion on Local Temperature in the Growing Season—the Case Study of the Sanjiang Plain, China" Remote Sensing 11, no. 24: 2915. https://doi.org/10.3390/rs11242915
APA StyleYu, L., & Liu, T. (2019). The Impact of Artificial Wetland Expansion on Local Temperature in the Growing Season—the Case Study of the Sanjiang Plain, China. Remote Sensing, 11(24), 2915. https://doi.org/10.3390/rs11242915