Pixel-Based Geometric Assessment of Channel Networks/Orders Derived from Global Spaceborne Digital Elevation Models
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Requirements
3. Methods
3.1. Data Preparation
3.2. Evaluating the Vertical Elevation Accuracy of Global DEMs Based on LiDAR DTM/DSM
3.3. Extraction of the Channel Networks/Orders
3.4. Developing ArcGIS Python Toolbox for Geometric Assessment of Channel Networks
3.5. Categorical Performance Measures for Assessing the Horizontal Accuracy of Channel Networks/Orders
4. Results
4.1. Traditional Statistical Indices for Evaluating the Vertical Height Accuracy of Global DEMs
4.2. Horizontal Evaluation of the Channel Networks
4.3. Performance Evaluation Metrics of the Geometric Assessment of Channel Orders
4.4. Effect of Global DEM Spatial Resolution on the Evaluation of Channel Networks/Orders
4.5. Characterizing the Horizontal Offset between the Extracted Channel Networks
5. Discussion
5.1. Vertical Accuracy of Global DEMs
5.2. Horizontal Accuracy of Channel Networks
5.3. Similarity Between the Findings of the Vertical Assessment of Global DEMs and the Horizontal Evaluation of Their Derived Channel Networks/Orders
5.4. Potential Applications of the Introduced Method
6. Conclusions
- The ALOS DSM 28.5 m and PALSAR DEM 12.5 m had the best performance when compared to the LiDAR DSM 28.5 m and LiDAR DTMs 12.5 m, respectively.
- The categorical performance measures were improved with the increase of PBTVs from 0 to 3 pixels. When evaluating the horizontal accuracy using LiDAR DTM 28.5 m derived-channel networks/orders, it was found that networks/orders delineated from PALSAR DEM 28.5 had the highest performance, followed by those from ALOS DSM 28.5 and SRTM DEM 28.5 m. However, taking into consideration the high spatial details of the PALSAR DEM 12.5 m, there was an extended possibility for observing more unmatched pixels, particularly with the use of an AT corresponding to 100 pixels. However, using an AT corresponding to 519 pixels (equivalent to an AT corresponding to 100 pixels at a spatial resolution of 28.5 m), the evaluation performance of the network/orders derived from LiDAR DEM 12.5 m was noticeably improved with the use of only one pixel as a PBTV. Therefore, the channel network and Strahler orders derived from PALSAR DEM 12.5 m were considered to have high horizontal accuracy (see Section 4.4 and Section 5.3 for additional details).
- Using a PBTV of 0, the number of co-located channels’ pixels was higher than those resulting from the use of more PBTVs. The number of unmatched pixels decreased with the increase of PBTV from 0 to 3 at different ATs. The number of channels that remained without displacement (a PBTV of 0) was greater when evaluating the networks delineated from global DEMs using those derived from LiDAR DTMs rather than LiDAR DSMs at comparable spatial resolutions. Furthermore, the highest number of matched co-located pixels was recorded in the comparison of the PALSAR DEM 28.5 m- and ALOS DSM 28.5 m-derived networks with that derived from LiDAR DTM 28.5 m.
- The findings of the two methods (pixel-based vertical accuracy of global DEMs and horizontal accuracy of their derived channel networks/orders) were mostly similar, but there were exceptions, particularly in comparison with LiDAR DSM 28.5 m and its derived network/orders.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tarekegn, T.H.; Haile, A.T.; Rientjes, T.; Reggiani, P.; Alkema, D. Assessment of an ASTER-generated DEM for 2D hydrodynamic flood modeling. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 457–465. [Google Scholar] [CrossRef]
- Casas, A.; Benito, G.; Thorndycraft, V.R.; Rico, M. The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surf. Process. Landf. 2006, 31, 444–456. [Google Scholar] [CrossRef]
- Li, J.; Wong, D.W.S. Effects of DEM sources on hydrologic applications. Comput. Environ. Urban Syst. 2010, 34, 251–261. [Google Scholar] [CrossRef]
- Jarihani, A.A.; Callow, J.N.; McVicar, T.R.; Van Niel, T.G.; Larsen, J.R. Satellite-derived Digital Elevation Model (DEM) selection, preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments. J. Hydrol. 2015, 524, 489–506. [Google Scholar] [CrossRef]
- Ghumman, A.R.; Al-Salamah, I.S.; AlSaleem, S.S.; Haider, H. Evaluating the impact of lower resolutions of digital elevation model on rainfall-runoff modeling for ungauged catchments. Environ. Monit. Assess. 2017, 189, 54. [Google Scholar] [CrossRef]
- Purinton, B.; Bookhagen, B. Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau. Earth Surf. Dyn. 2017, 5, 211–237. [Google Scholar] [CrossRef] [Green Version]
- Maune, D.F. Digital Elevation Model Technologies and Applications: The DEM Users Manual; American Society for Photogrammetry and Remote Sensing: London, UK, 2001; ISBN 1570830649. [Google Scholar]
- Fernandez-Diaz, J.C.; Carter, W.E.; Shrestha, R.L.; Glennie, C.L. Now you see it... Now you don’t: Understanding airborne mapping LiDAR collection and data product generation for archaeological research in Mesoamerica. Remote Sens. 2014, 6, 9951–10001. [Google Scholar] [CrossRef]
- Jedlika, K. Accuracy of Surface Models Acquired from Different Sources—Important Information for Geomorphological Research. Geomorphol. Slovaca Bohem. 2009, 9, 17–28. [Google Scholar]
- Wilson, J.P. Terrain Analysis: Principles and Applications; Wiley: Hoboken, NJ, USA, 2000; ISBN 0471321885. [Google Scholar]
- Taud, H.; Parrot, J.F.; Alvarez, R. DEM generation by contour line dilation. Comput. Geosci. 1999, 25, 775–783. [Google Scholar] [CrossRef]
- El-Sheimy, N.; Valeo, C. Digital Terrain Modeling: Acquisition, Manipulation, and Applications; Artech House: Norwood, MA, USA, 2005; ISBN 1580539211. [Google Scholar]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global DEM Generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II-4, 71–76. [Google Scholar] [CrossRef]
- Yap, L.; Kandé, L.H.; Nouayou, R.; Kamguia, J.; Ngouh, N.A.; Makuate, M.B. Vertical accuracy evaluation of freely available latest high-resolution (30 m) global digital elevation models over Cameroon (Central Africa) with GPS/leveling ground control points. Int. J. Digit. Earth 2018, 1–25. [Google Scholar] [CrossRef]
- Razak, K.A.; Santangelo, M.; Van Westen, C.J.; Straatsma, M.W.; de Jong, S.M. Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment. Geomorphology 2013, 190, 112–125. [Google Scholar] [CrossRef]
- Fu, C.Y.; Tsay, J.R. Statistic tests aided multi-source DEM fusion. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 41, 227–233. [Google Scholar] [CrossRef]
- Basso, B. Digital Terrain Analysis: Data Source, Resolution and Applications for Modeling Physical Processes in Agroecosystems. Riv. Ital. Agrometeorol. 2005, 14, 5–14. [Google Scholar]
- Shi, W.; Wang, B.; Tian, Y. Accuracy Analysis of Digital Elevation Model Relating to Spatial Resolution and Terrain Slope by Bilinear Interpolation. Math. Geosci. 2014, 46, 445–481. [Google Scholar] [CrossRef]
- Lin, K.; Zhang, Q.; Chen, X. An evaluation of impacts of DEM resolution and parameter correlation on TOPMODEL modeling uncertainty. J. Hydrol. 2010, 394, 370–383. [Google Scholar] [CrossRef]
- Lin, S.; Jing, C.; Chaplot, V.; Yu, X.; Zhang, Z.; Moore, N.; Wu, J. Effect of DEM resolution on SWAT outputs of runoff, sediment and nutrients. Hydrol. Earth Syst. Sci. Discuss. 2010, 7, 4411–4435. [Google Scholar] [CrossRef]
- Sanders, B.F. Evaluation of on-line DEMs for flood inundation modeling. Adv. Water Resour. 2007, 30, 1831–1843. [Google Scholar] [CrossRef]
- Sarachi, S.; Hsu, K.; Sorooshian, S. A Statistical Model for the Uncertainty Analysis of Satellite Precipitation Products. J. Hydrometeorol. 2015, 16, 2101–2117. [Google Scholar] [CrossRef]
- Saksena, S.; Merwade, V. Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping. J. Hydrol. 2015, 530, 180–194. [Google Scholar] [CrossRef] [Green Version]
- Schumann, G.J.-P.; Bates, P.D.; Neal, J.C.; Andreadis, K.M. Technology: Fight floods on a global scale. Nature 2014, 507, 169. [Google Scholar] [CrossRef]
- Vaze, J.; Teng, J.; Spencer, G. Impact of DEM accuracy and resolution on topographic indices. Environ. Model. Softw. 2010, 25, 1086–1098. [Google Scholar] [CrossRef]
- Miller, C.L.; Laflamme, R.A. The Digital Terrain Model Theory & Application. Photogramm. Eng. Remote Sens. 1958, 24, 433–442. [Google Scholar]
- Priestnall, G.; Jaafar, J.; Duncan, A. (read)Artificial Neural Network for classification_Extracting urban features from LiDAR digital surface models. Comput. Environ. Urban Syst. 2000, 24, 65–78. [Google Scholar] [CrossRef]
- Walker, W.S.; Kellndorfer, J.M.; Pierce, L.E. Quality assessment of SRTM C- and X-band interferometric data: Implications for the retrieval of vegetation canopy height. Remote Sens. Environ. 2007, 106, 428–448. [Google Scholar] [CrossRef]
- Baugh, C.A.; Bates, P.D.; Schumann, G.; Trigg, M.A. SRTM vegetation removal and hydrodynamic modeling accuracy. Water Resour. Res. 2013, 49, 5276–5289. [Google Scholar] [CrossRef] [Green Version]
- Kocak, G.; Buyuksalih, G.; Jacobsen, K. Analysis of digital elevation models determined by high resolution space images. Int. Arch. Photogramm. Remote Sens. 2004, 35, 636–641. [Google Scholar]
- Leopold, L.B. Fluvial Processes in Geomorphology; Dover Publications: Mineola, NY, USA, 1995; ISBN 0486685888. [Google Scholar]
- O’Callaghan, J.F.; Mark, D.M. The extraction of drainage networks from digital elevation data. Comput. Vis. Graph. Image Process. 1984, 28, 247. [Google Scholar] [CrossRef]
- Yang, W.; Hou, K.; Yu, F.; Liu, Z.; Sun, T. A novel algorithm with heuristic information for extracting drainage networks from raster DEMs. Hydrol. Earth Syst. Sci. Discuss. 2010, 7, 441–459. [Google Scholar] [CrossRef]
- Omran, A.; Dietrich, S.; Abouelmagd, A.; Michael, M. New ArcGIS tools developed for stream network extraction and basin delineations using Python and java script. Comput. Geosci. 2016, 94, 140–149. [Google Scholar] [CrossRef]
- Chandrashekar, H.; Lokesh, K.V.; Sameena, M.; Roopa, J.; Ranganna, G. GIS–Based Morphometric Analysis of Two Reservoir Catchments of Arkavati River, Ramanagaram District, Karnataka. Aquat. Procedia 2015, 4, 1345–1353. [Google Scholar] [CrossRef]
- Angillieri, M.Y.E. Morphometric characterization of the Carrizal basin applied to the evaluation of flash floods hazard, San Juan, Argentina. Quat. Int. 2012, 253, 74–79. [Google Scholar] [CrossRef]
- Tarboton, D.G.; Bras, R.L.; Rodriguez-Iturbet, I.; Parsons, R.M. On the Extraction of Channel Networks From Digital Elevation Data. Hydrol. Process. 1991, 5, 81–100. [Google Scholar] [CrossRef]
- Moretti, G.; Orlandini, S. Hydrography-Driven Coarsening of Grid Digital Elevation Models. Water Resour. Res. 2018, 54, 3654–3672. [Google Scholar] [CrossRef]
- Jenson, S.K.; Dominque, J.O. Extracting Topographic Structure from Digital Elevation Data for {Geographic Information System} Analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
- Lin, W.-T.T.; Chou, W.-C.C.; Lin, C.-Y.Y.; Huang, P.-H.H.; Tsai, J.-S.S. Automated suitable drainage network extraction from digital elevation models in Taiwan’s upstream watersheds. Hydrol. Process. 2006, 20, 289–306. [Google Scholar] [CrossRef]
- Orlandini, S.; Moretti, G.; Franchini, M.; Aldighieri, B.; Testa, B. Path-based methods for the determination of nondispersive drainage directions in grid-based digital elevation models. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef] [Green Version]
- Orlandini, S.; Moretti, G. Determination of surface flow paths from gridded elevation data. Water Resour. Res. 2009, 45, 1–14. [Google Scholar] [CrossRef]
- Ogden, F.L.; Garbrecht, J.; DeBarry, P.A.; Johnson, L.E. GIS and Distributed Watershed Models. II: Modules, Interfaces, and Models. J. Hydrol. Eng. 2001, 6, 515–523. [Google Scholar] [CrossRef]
- Tesfa, T.K.; Tarboton, D.G.; Watson, D.W.; Schreuders, K.A.T.; Baker, M.E.; Wallace, R.M. Extraction of hydrological proximity measures from DEMs using parallel processing. Environ. Model. Softw. 2011, 26, 1696–1709. [Google Scholar] [CrossRef]
- Wu, M.; Shi, P.; Chen, A.; Shen, C.; Wang, P. Impacts of DEM resolution and area threshold value uncertainty on the drainage network derived using SWAT. Water SA 2017, 43, 450–462. [Google Scholar] [CrossRef]
- Anderson, D.L.; Ames, D.P.; Yang, P. Quantitative Methods for Comparing Different Polyline Stream Network Models. J. Geogr. Inf. Syst. 2014, 6, 88–98. [Google Scholar] [CrossRef]
- Mozas-Calvache, A.T.; Ureña-Cámara, M.A.; Ariza-López, F.J. Determination of 3D Displacements of Drainage Networks Extracted from Digital Elevation Models (DEMs) Using Linear-Based Methods. ISPRS Int. J. Geo-Inf. 2017, 6, 234. [Google Scholar] [CrossRef]
- Beumier, C.; Idrissa, M. Digital terrain models derived from digital surface model uniform regions in urban areas. Int. J. Remote Sens. 2016, 37, 3477–3493. [Google Scholar] [CrossRef]
- Zheng, Y.; Weng, Q.; Zheng, Y. A hybrid approach for three-dimensional building reconstruction in indianapolis from LiDAR data. Remote Sens. 2017, 9, 310. [Google Scholar] [CrossRef]
- Vianello, A.; Cavalli, M.; Tarolli, P. LiDAR-derived slopes for headwater channel network analysis. Catena 2009, 76, 97–106. [Google Scholar] [CrossRef]
- Thommeret, N.; Bailly, J.S.; Puech, C. Extraction of thalweg networks from DTMs: Application to badlands. Hydrol. Earth Syst. Sci. 2010, 14, 1527–1536. [Google Scholar] [CrossRef]
- Godone, D.; Garnero, G. The role of morphometric parameters in Digital Terrain Models interpolation accuracy: A case study. Eur. J. Remote Sens. 2013, 46, 198–214. [Google Scholar] [CrossRef]
- Höfle, B.; Griesbaum, L.; Forbriger, M. GIS-Based detection of gullies in terrestrial lidar data of the cerro llamoca peatland (peru). Remote Sens. 2013, 5, 5851–5870. [Google Scholar] [CrossRef]
- Cavalli, M.; Trevisani, S.; Goldin, B.; Mion, E.; Crema, S.; Valentinotti, R. Semi-automatic derivation of channel network from a high-resolution DTM: The example of an italian alpine region. Eur. J. Remote Sens. 2013, 46, 152–174. [Google Scholar] [CrossRef]
- Passalacqua, P.; Do Trung, T.; Foufoula-Georgiou, E.; Sapiro, G.; Dietrich, W.E. A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths. J. Geophys. Res. 2010, 115, F01002. [Google Scholar] [CrossRef]
- Parrot, J.F.; Ramírez Núñez, C. Artefactos y correcciones a los Modelos Digitales de Terreno provenientes del LiDAR. Investig. Geogr. 2016, 2016, 28–39. [Google Scholar] [CrossRef]
- Yang, P.; Ames, D.P.; Fonseca, A.; Anderson, D.; Shrestha, R.; Glenn, N.F.; Cao, Y. What is the effect of LiDAR-derived DEM resolution on large-scale watershed model results? Environ. Model. Softw. 2014, 58, 48–57. [Google Scholar] [CrossRef]
- Roelens, J.; Rosier, I.; Dondeyne, S.; Van Orshoven, J.; Diels, J. Extracting drainage networks and their connectivity using LiDAR data. Hydrol. Process. 2018, 32, 1026–1037. [Google Scholar] [CrossRef]
- Cazorzi, F.; Fontana, G.D.; De Luca, A.; Sofia, G.; Tarolli, P. Drainage network detection and assessment of network storage capacity in agrarian landscape. Hydrol. Process. 2013, 27, 541–553. [Google Scholar] [CrossRef]
- Sharma, M.; Paige, G.B.; Miller, S.N.; Sharma, M.; Paige, G.B.; Miller, S.N. DEM Development from Ground-Based LiDAR Data: A Method to Remove Non-Surface Objects. Remote Sens. 2010, 2, 2629–2642. [Google Scholar] [CrossRef] [Green Version]
- Altaf, F.; Meraj, G.; Romshoo, S.A. Morphometric Analysis to Infer Hydrological Behavior of Lidder Watershed, Western Himalaya, India. Geogr. J. 2013, 2013, 14. [Google Scholar]
- Bhatt, S.; Ahmed, S.A. Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM. Geocarto Int. 2014, 29, 878–894. [Google Scholar] [CrossRef]
- El Osta, M.M.; Masoud, M.H. Implementation of a hydrologic model and GIS for estimating Wadi runoff in Dernah area, Al Jabal Al Akhadar, NE Libya. J. Afr. Earth Sci. 2015, 107, 36–56. [Google Scholar] [CrossRef]
- Abuzied, S.; Yuan, M.; Ibrahim, S.; Kaiser, M.; Saleem, T. Geospatial risk assessment of flash floods in Nuweiba area, Egypt. J. Arid Environ. 2016, 133, 54–72. [Google Scholar] [CrossRef]
- El Osta, M.M.; El Sabri, M.S.; Masoud, M.H. Estimation of flash flood using surface water model and GIS technique in Wadi El Azariq, East Sinai, Egypt. Nat. Hazards Earth Syst. Sci. Discuss. 2016, 1–51. [Google Scholar] [CrossRef]
- Hassan Syed, N.; Adbul Rehman, A.; Hussain, D.; Ishaq, S.; Ahmed Khan, A. Morphometric analysis to prioritize sub-watershed for flood risk assessment in Central Karakoram National Park using GIS/RS approach. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-4, 14–15. [Google Scholar] [CrossRef]
- Jahan, C.S.; Rahaman, M.F.; Arefin, R.; Ali, S.; Mazumder, Q.H. Morphometric Analysis and Hydrological Inference for Water Resource Management in Atrai-Sib River Basin, NW Bangladesh Using Remote Sensing and GIS Technique. J. Geol. Soc. India 2018, 91, 613–620. [Google Scholar] [CrossRef]
- Kumar, P.; Rajeev, R.; Chandel, S.; Narayan, V.; Prafull, M. Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data. Appl. Water Sci. 2018, 8, 1–16. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joshi, P.K.; Mukherjee, S.; Ghosh, A.; Garg, R.D.; Mukhopadhyay, A. Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 205–217. [Google Scholar] [CrossRef]
- Thomas, J.; Joseph, S.; Thrivikramji, K.P.; Arunkumar, K.S. Sensitivity of digital elevation models: The scenario from two tropical mountain river basins of the Western Ghats, India. Geosci. Front. 2014, 5, 893–909. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.; Prasannakumar, V. Comparison of basin morphometry derived from topographic maps, ASTER and SRTM DEMs: An example from Kerala, India. Geocarto Int. 2015, 30, 346–364. [Google Scholar] [CrossRef]
- Das, S.; Patel, P.P.; Sengupta, S. Evaluation of different digital elevation models for analyzing drainage morphometric parameters in a mountainous terrain: A case study of the Supin–Upper Tons Basin, Indian Himalayas. Springerplus 2016, 5, 1–38. [Google Scholar] [CrossRef]
- Watt, B.J.T.; Johnson, S.Y.; Hartwell, S.R.; Roberts, M.; Jewell, S. Offshore Geology and Geomorphology from Point Piedras Blancas to Pismo Beach, San Luis Obispo County, California; USGS Publications Warehouse: Reston, VA, USA, 2015. [Google Scholar]
- City of San Luis Obispo Utilities Department Whale Rock Reservoir|City of San Luis Obispo, CA. Available online: https://www.slocity.org/government/department-directory/utilities-department/water/water-sources/whale-rock-reservoir (accessed on 2 January 2019).
- Hall, C.A.; Prior, S.W. Geologic Map of the Cayucos-San Luis Obispo Region, San Luis Obispo County, California; USGS Publications Warehouse: Reston, VA, USA, 1975. [Google Scholar]
- Griffin, J.R.; Critchfield, W.B. The Distribution of Forest Trees in California; USDA Forest Service: Berkeley, CA, USA, 1972.
- Wells, P.V. Vegetation in Relation to Geological Substratum and Fire in the San Luis Obispo Quadrangle, California. Ecol. Monogr. 1962, 32, 79–103. [Google Scholar] [CrossRef]
- Environmental Systems Research Institute (ESRI) World Imagery: DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. Available online: https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9 (accessed on 4 January 2019).
- Farr, T.; Rosen, P.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef]
- Laurencelle, J.; Logan, T.; Gens, R. ASF Radiometrically Terrain Corrected ALOS PALSAR products. ASF-Alaska Satell. Facil. 2015, 1, 12. [Google Scholar]
- Takaku, J.; Tadono, T.; Tsutsui, K. Generation of high resolution global DSM from ALOS PRISM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2014, 40, 243–248. [Google Scholar] [CrossRef]
- Wilson, S.; Steinberg, S. Technical Data Report Diablo Canyon Power Plant (DCCP) San Simeon; Office for Coastal Management: Charleston, SC, USA, 2013.
- Pakoksung, K.; Takagi, M. Digital elevation models on accuracy validation and bias correction in vertical. Model. Earth Syst. Environ. 2016, 2, 11. [Google Scholar] [CrossRef]
- Sharma, A.; Tiwari, K.N.; Bhadoria, P.B.S. Vertical accuracy of digital elevation model from Shuttle Radar Topographic Mission—A case study. Geocarto Int. 2010, 25, 257–267. [Google Scholar] [CrossRef]
- Environmental Systems Research Institute (ESRI). What is ArcGIS? ESRI: Redlalands, CA, USA, 2001; ISBN 1-879102-92-7. [Google Scholar]
- Orlandini, S.; Tarolli, P.; Moretti, G.; Dalla Fontana, G. On the prediction of channel heads in a complex alpine terrain using gridded elevation data. Water Resour. Res. 2011, 47, 1–12. [Google Scholar] [CrossRef]
- Seibert, J.; McGlynn, B.L. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Ren, Q.; Xuan, Y.; Chen, Y.; Cluckie, I.D. An effective depression filling algorithm for DEM-based 2-D surface flow modelling. Hydrol. Earth Syst. Sci. 2013, 17, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Tarboton, D.G.; Bras, R.L.; Rodriguez-Iturbe, I. The fractal nature of river networks. Water Resour. Res. 1988, 24, 1317–1322. [Google Scholar] [CrossRef]
- Tribe, A. Automated recognition of valley lines and drainage networks from grid digital elevation models: A review and a new method. J. Hydrol. 1992, 139, 263–293. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E. Channel Initiation and the Problem of Landscape Scale. Science 1992, 255, 826–830. [Google Scholar] [CrossRef] [Green Version]
- Maidment, D.R. Arc Hydro: GIS for Water Resources; ESRI Press: Redlands, CA, USA, 2002; ISBN 1589480341. [Google Scholar]
- Jones, R. Algorithms for using a DEM for mapping catchment areas of stream sediment samples. Comput. Geosci. 2002, 28, 1051–1060. [Google Scholar] [CrossRef]
- Hu, Q.; Wu, W.; Xia, T.; Yu, Q.; Yang, P.; Li, Z.; Song, Q.; Hu, Q.; Wu, W.; Xia, T.; et al. Exploring the Use of Google Earth Imagery and Object-Based Methods in Land Use/Cover Mapping. Remote Sens. 2013, 5, 6026–6042. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.L.; Aide, T.M.; Grau, H.R.; Riner, G. A scalable approach to mapping annual land cover at 250 m using MODIS time series data: A case study in the Dry Chaco ecoregion of South America. Remote Sens. Environ. 2010, 114, 2816–2832. [Google Scholar] [CrossRef]
- Mering, C.; Baro, J.; Upegui, E. Retrieving urban areas on Google Earth images: Application to towns of West Africa. Int. J. Remote Sens. 2010, 31, 5867–5877. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union 1957, 38, 913. [Google Scholar] [CrossRef]
- Horton, R.E. Erosional development of streams and their drainage basins: Hydro-physical approach to quantitative morphology. Geol. Soc. Am. Bull. 1945, 56, 275–370. [Google Scholar] [CrossRef]
- GRASS Development Team Geographic Resources Analysis Support System (GRASS) (Open Source Geospatial Foundation Project). Available online: https://live.osgeo.org/en/overview/grass_overview.html (accessed on 2 January 2019).
- QGIS Development Team Quantum GIS Geographic Information System (Open Source Geospatial Foundation Project). Available online: https://live.osgeo.org/en/overview/qgis_overview.html (accessed on 2 January 2019).
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J. Hydrol. 2013, 504, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Aronoff, S.D.A. The map accuracy report: A user’s view. Photogramm. Eng. Remote Sens. 1982, 48, 1309–1312. [Google Scholar]
- Garcia-Pedrero, A.; Gonzalo-Martin, C.; Fonseca-Luengo, D.; Lillo-Saavedra, M. A GEOBIA methodology for fragmented agricultural landscapes. Remote Sens. 2015, 7, 767–787. [Google Scholar] [CrossRef]
- Ao, Z.; Su, Y.; Li, W.; Guo, Q.; Zhang, J. One-class classification of airborne LiDAR data in urban areas using a presence and background learning algorithm. Remote Sens. 2017, 9, 1001. [Google Scholar] [CrossRef]
- Qiu, C.; Schmitt, M.; Mou, L.; Ghamisi, P.; Zhu, X.X. Feature importance analysis for local climate zone classification using a residual convolutional neural network with multi-source datasets. Remote Sens. 2018, 10, 1572. [Google Scholar] [CrossRef]
- Cai, L.; Shi, W.; Miao, Z.; Hao, M. Accuracy assessment measures for object extraction from remote sensing images. Remote Sens. 2018, 10, 303. [Google Scholar] [CrossRef]
- Pierce, K.B. Accuracy optimization for high resolution object-based change detection: An example mapping regional urbanization with 1-m aerial imagery. Remote Sens. 2015, 7, 12654–12679. [Google Scholar] [CrossRef]
- Gaetano, R.; Ienco, D.; Ose, K.; Cresson, R. MRFusion: A Deep Learning architecture to fuse PAN and MS imagery for land cover mapping. Comput. Vis. Pattern Recognit. 2018, 1–20. [Google Scholar]
- Hütt, C.; Koppe, W.; Miao, Y.; Bareth, G. Best accuracy land use/land cover (LULC) classification to derive crop types using multitemporal, multisensor, and multi-polarization SAR satellite images. Remote Sens. 2016, 8, 684. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, X.; Pan, Y.; Gu, J.; Zhao, A.; Liu, X. A comparison of model-assisted estimators to infer land cover/use class area using satellite imagery. Remote Sens. 2014, 6, 8904–8922. [Google Scholar] [CrossRef]
- Congalton, R.G.; Oderwald, R.G.; Mead, R.A. Assessing Landsat Classification Accuracy Using Discrete Multivariate Analysis Statistical Techniques. Photogramm. Eng. Remote Sens. 1983, 49, 1671–1678. [Google Scholar]
- Story, M.; Congalton, R.G. Remote Sensing Brief Accuracy Assessment: A User’s Perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Rozenstein, O.; Karnieli, A. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl. Geogr. 2011, 31, 533–544. [Google Scholar] [CrossRef]
- Radoux, J.; Bogaert, P. Good practices for object-based accuracy assessment. Remote Sens. 2017, 9, 646. [Google Scholar] [CrossRef]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Tan, P.-N.; Steinbach, M.; Kumar, V. Introduction to Data Mining; Pearson Addison Wesley: Boston, MA, USA, 2005; ISBN 0321321367. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Congalton, R.; Mead, R. A quantitative method to test for consistency and correctness in photointerpretation. Photogramm. Eng. Remote Sens. 1983, 49, 69–74. [Google Scholar] [CrossRef]
- Smits, P.C.; Dellepiane, S.G.; Schowengerdt, R.A. Quality assessment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach. Int. J. Remote Sens. 1999, 20, 1461–1486. [Google Scholar] [CrossRef]
- Boschetti, M.; Nutini, F.; Manfron, G.; Brivio, P.A.; Nelson, A. Comparative Analysis of Normalised Difference Spectral Indices Derived from MODIS for Detecting Surface Water in Flooded Rice Cropping Systems. PLoS ONE 2014, 9, e88741. [Google Scholar] [CrossRef]
- Dewitt, J.D.; Warner, T.A.; Conley, J.F. Comparison of DEMS derived from USGS DLG, SRTM, a statewide photogrammetry program, ASTER GDEM and LiDAR: Implications for change detection. GISci. Remote Sens. 2015, 52, 179–197. [Google Scholar] [CrossRef]
- Acharya, T.D.; Lee, D.; Yang, I.T. Comparative Analysis of Digital Elevation Models between AW3D30, SRTM30 and Airborne LiDAR: A Case of Chunc. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2018, 36, 17–24. [Google Scholar] [CrossRef]
- Liu, J.; Chang, K.; Lin, C.; Chang, L.; Co, L.T.; City, Z.; County, H. Accuracy Evaluation of Alos Dem With Airborne Lidar Data in Southern Taiwan. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar]
- Alganci, U.; Besol, B.; Sertel, E. Accuracy Assessment of Different Digital Surface Models. ISPRS Int. J. Geo-Inf. 2018, 7, 114. [Google Scholar] [CrossRef]
- Santillan, J.R.; Makinano-Santillan, M. Vertical accuracy assessment of 30-M resolution ALOS, ASTER, and SRTM global DEMS over Northeastern Mindanao, Philippines. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 41, 149–156. [Google Scholar] [CrossRef]
- Hu, Z.; Peng, J.; Hou, Y.; Shan, J. Evaluation of recently released open global digital elevation models of Hubei, China. Remote Sens. 2017, 9, 262. [Google Scholar] [CrossRef]
- Alaska Satellite Facility (ASF). ASF Radiometric Terrain Corrected Products—Algorithm Theoretical Basis Document; ASF: Fairbanks, AK, USA, 2015. [Google Scholar]
- Shimada, M. Ortho-Rectification and Slope Correction of SAR Data Using DEM and Its Accuracy Evaluation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 657–671. [Google Scholar] [CrossRef]
- Hofton, M.; Dubayah, R.; Blair, J.B.; Rabine, D. Validation of SRTM elevations over vegetated and non-vegetated terrain using medium footprint lidar. Photogramm. Eng. Remote Sens. 2006, 72, 279–285. [Google Scholar] [CrossRef]
- Mozas-Calvache, A.T.; Ariza-López, F.J. Adapting 2D positional control methodologies based on linear elements to 3D. Surv. Rev. 2015, 47, 195–201. [Google Scholar] [CrossRef]
Feature | SRTM GL1 V003 DEM | ALOS PALSAR DEM | ALOS World 3D (ALOS DSM) |
---|---|---|---|
Spatial Extent | Near global (60° N to 56° S) | Near global (60° N to 59° S) | Near global (60° N to 60° S) |
Spatial Resolution | ≈28.5 m | 12.5 m | ≈28.5 m |
Horizontal Reference | WGS 1984 | NAD 83 | WGS 1984 |
Vertical Reference | WGS 1984/EGM 96 | NAVD 88 | WGS 1984/EGM 96 |
Sensor Type | Radar (C band) | Radar (L band) | Optical (pan-chromatic band) |
Generation Techniques | SAR interferometry | SAR interferometry | Optical stereo matching |
Data Access | OpenTopography | ASF DAAC | OpenTopography |
Owner Agency | NASA, NGA, DLR | JAXA, NASA | JAXA |
Data Type | 16-bit signed integer | 16-bit signed integer | 16-bit signed integer |
File Format | GeoTIFF | GeoTIFF | GeoTIFF |
Temporal Extent | 02/11/2000–02/21/2000 | 2006–2011 | 2017 |
Additional Details | [79] | [80] | [13,81] |
Test Class | ||
---|---|---|
Reference Class | Net0 | Net1 |
Net0 | Net0,0 (TN) = Number of Net0 pixels classified correctly as Net0 | Net0,1 (FP) = Number of Net0 pixels classified incorrectly as Net1 |
Net1 | Net1,0 (FN) = Number of Net1 pixels classified incorrectly as Net0 | Net1,1 (TP) = Number of Net1 pixels classified correctly as Net1 |
Test Data Global DEMs-Based Channel Orders | ||||||||
B_0 | Ord_1 | Ord_2 | Ord_3 | Ord_4 | Ord_5 | Ord_n | ||
Reference Data LiDAR DTM/DSM-based Orders | B_0 | B0, B0 | B0, Ord1 | B0, Ord2 | B0, Ord3 | B0, Ord4 | B0, Ord5 | B0, Ordn |
Ord_1 | Ord1, B0 | Ord1,1 (TP) | Ord1,2 | Ord1,3 | Ord1,4 | Ord1,5 | Ord1,n | |
Ord_2 | Ord2, B0 | Ord2,1 | Ord2,2 (TP) | Ord2,3 | Ord2,4 | Ord2,5 | Ord2,n | |
Ord_3 | Ord3, B0 | Ord3,1 | Ord3,2 | Ord3,3 (TP) | Ord3,4 | Ord3,5 | Ord3,n | |
Ord_4 | Ord4, B0 | Ord4,1 | Ord4,2 | Ord4,3 | Ord4,4 (TP) | Ord4,5 | Ord4,n | |
Ord_5 | Ord5, B0 | Ord5,1 | Ord5,2 | Ord5,3 | Ord5,4 | Ord5,5 (TP) | Ord5,n | |
Ord_n | Ordn, B0 | Ordn,1 | Ordn,2 | Ordn,3 | Ordn,4 | Ordn,5 | Ordn,n (TP) |
Reference Data | Test Data | Spatial Resolution | RMSE (m) | MD (m) |
---|---|---|---|---|
LiDAR DTM | ALOS DSM | 28.5 m | 4.695 | −1.260 |
LiDAR DTM | SRTM DEM | 28.5 m | 5.172 | −2.655 |
LiDAR DTM | PALSAR DEM | 28.5 m | 4.988 | 0.952 |
LiDAR DTM | PALSAR DEM | 12.5 m | 4.571 | 0.777 |
LiDAR DSM | ALOS DSM | 28.5 m | 4.012 | −0.288 |
LiDAR DSM | SRTM DEM | 28.5 m | 4.537 | −1.699 |
LiDAR DSM | PALSAR DEM | 28.5 m | 5.434 | 1.929 |
LiDAR DSM | PALSAR DEM | 12.5 m | 5.186 | 1.741 |
Reference LiDAR-Based Net | DTM | DSM | DTM | DSM | DTM | DSM | DTM | DSM |
---|---|---|---|---|---|---|---|---|
PBTV_AT | 0_25 | 0_25 | 3_25 | 3_25 | 0_100 | 0_100 | 3_100 | 3_100 |
PA_Net | 0.505 | 0.518 | 0.938 | 0.929 | 0.453 | 0.476 | 0.916 | 0.919 |
UA_Net | 0.483 | 0.506 | 0.897 | 0.907 | 0.456 | 0.476 | 0.920 | 0.919 |
F_Net | 0.494 | 0.512 | 0.917 | 0.918 | 0.455 | 0.476 | 0.918 | 0.919 |
KI_Net | 0.431 | 0.444 | 0.907 | 0.907 | 0.423 | 0.446 | 0.913 | 0.914 |
KI_Ords | 0.389 | 0.403 | 0.766 | 0.766 | 0.395 | 0.419 | 0.816 | 0.827 |
PA_Ord1 | 0.423 | 0.417 | 0.751 | 0.733 | 0.426 | 0.439 | 0.771 | 0.784 |
PA_Ord2 | 0.371 | 0.380 | 0.588 | 0.581 | 0.382 | 0.425 | 0.736 | 0.757 |
PA_Ord3 | 0.354 | 0.389 | 0.605 | 0.610 | 0.287 | 0.345 | 0.638 | 0.680 |
PA_Ord4 | 0.294 | 0.340 | 0.544 | 0.563 | 0.280 | 0.262 | 0.585 | 0.627 |
PA_Ord5 | 0.222 | 0.147 | 0.452 | 0.347 | 0.113 | 0.160 | 0.437 | 0.564 |
PA_Ord6 | 0.057 | 0.178 | 0.179 | 0.377 | ||||
UA_Ord1 | 0.385 | 0.393 | 0.683 | 0.691 | 0.432 | 0.443 | 0.781 | 0.790 |
UA_Ord2 | 0.372 | 0.381 | 0.590 | 0.583 | 0.379 | 0.416 | 0.730 | 0.742 |
UA_Ord3 | 0.360 | 0.399 | 0.616 | 0.626 | 0.287 | 0.334 | 0.637 | 0.659 |
UA_Ord4 | 0.316 | 0.315 | 0.585 | 0.521 | 0.251 | 0.273 | 0.523 | 0.652 |
UA_Ord5 | 0.135 | 0.195 | 0.275 | 0.460 | 0.143 | 0.187 | 0.554 | 0.659 |
UA_Ord6 | 0.167 | 0.280 | 0.520 | 0.593 |
Reference LiDAR-Based Net | DTM | DSM | DTM | DSM | DTM | DSM | DTM | DSM |
---|---|---|---|---|---|---|---|---|
PBTV_AT | 0_25 | 0_25 | 3_25 | 3_25 | 0_100 | 0_100 | 3_100 | 3_100 |
PA_Net | 0.429 | 0.439 | 0.910 | 0.905 | 0.384 | 0.406 | 0.891 | 0.895 |
UA_Net | 0.420 | 0.438 | 0.891 | 0.904 | 0.394 | 0.414 | 0.912 | 0.913 |
F_Net | 0.425 | 0.438 | 0.900 | 0.905 | 0.389 | 0.410 | 0.902 | 0.904 |
KI_Net | 0.354 | 0.369 | 0.887 | 0.892 | 0.354 | 0.377 | 0.896 | 0.898 |
KI_Ords | 0.305 | 0.319 | 0.721 | 0.725 | 0.326 | 0.348 | 0.793 | 0.797 |
PA_Ord1 | 0.311 | 0.311 | 0.675 | 0.667 | 0.355 | 0.369 | 0.759 | 0.764 |
PA_Ord2 | 0.300 | 0.310 | 0.534 | 0.523 | 0.322 | 0.338 | 0.675 | 0.670 |
PA_Ord3 | 0.287 | 0.311 | 0.499 | 0.500 | 0.188 | 0.239 | 0.515 | 0.529 |
PA_Ord4 | 0.190 | 0.293 | 0.422 | 0.501 | 0.203 | 0.245 | 0.683 | 0.679 |
PA_Ord5 | 0.109 | 0.130 | 0.343 | 0.317 | 0.115 | 0.147 | 0.522 | 0.603 |
PA_Ord6 | 0.101 | 0.110 | 0.336 | 0.407 | ||||
UA_Ord1 | 0.298 | 0.308 | 0.647 | 0.662 | 0.353 | 0.364 | 0.753 | 0.754 |
UA_Ord2 | 0.298 | 0.307 | 0.529 | 0.518 | 0.349 | 0.361 | 0.730 | 0.716 |
UA_Ord3 | 0.315 | 0.345 | 0.550 | 0.554 | 0.233 | 0.288 | 0.639 | 0.638 |
UA_Ord4 | 0.193 | 0.256 | 0.428 | 0.437 | 0.132 | 0.184 | 0.443 | 0.512 |
UA_Ord5 | 0.056 | 0.145 | 0.176 | 0.355 | 0.144 | 0.170 | 0.654 | 0.697 |
UA_Ord6 | 0.147 | 0.087 | 0.488 | 0.321 |
Reference LiDAR-Based Net | DTM | DSM | DTM | DSM | DTM | DSM | DTM | DSM |
---|---|---|---|---|---|---|---|---|
PBTV_AT | 0_25 | 0_25 | 3_25 | 3_25 | 0_100 | 0_100 | 3_100 | 3_100 |
PA_Net | 0.530 | 0.491 | 0.899 | 0.880 | 0.509 | 0.452 | 0.892 | 0.880 |
UA_Net | 0.547 | 0.517 | 0.927 | 0.926 | 0.537 | 0.475 | 0.940 | 0.923 |
F_Net | 0.538 | 0.504 | 0.913 | 0.902 | 0.523 | 0.463 | 0.915 | 0.901 |
KI_Net | 0.483 | 0.444 | 0.902 | 0.890 | 0.496 | 0.433 | 0.910 | 0.895 |
KI_Ords | 0.440 | 0.404 | 0.769 | 0.749 | 0.471 | 0.409 | 0.828 | 0.806 |
PA_Ord1 | 0.438 | 0.414 | 0.731 | 0.695 | 0.475 | 0.428 | 0.790 | 0.769 |
PA_Ord2 | 0.407 | 0.370 | 0.585 | 0.555 | 0.430 | 0.410 | 0.699 | 0.690 |
PA_Ord3 | 0.403 | 0.368 | 0.576 | 0.546 | 0.437 | 0.336 | 0.691 | 0.643 |
PA_Ord4 | 0.404 | 0.340 | 0.570 | 0.541 | 0.360 | 0.176 | 0.568 | 0.492 |
PA_Ord5 | 0.355 | 0.147 | 0.466 | 0.341 | 0.221 | 0.112 | 0.503 | 0.436 |
UA_Ord1 | 0.433 | 0.424 | 0.722 | 0.712 | 0.484 | 0.434 | 0.806 | 0.781 |
UA_Ord2 | 0.436 | 0.396 | 0.626 | 0.595 | 0.497 | 0.469 | 0.809 | 0.788 |
UA_Ord3 | 0.476 | 0.437 | 0.679 | 0.649 | 0.431 | 0.322 | 0.682 | 0.617 |
UA_Ord4 | 0.402 | 0.292 | 0.568 | 0.464 | 0.347 | 0.197 | 0.548 | 0.551 |
UA_Ord5 | 0.186 | 0.168 | 0.244 | 0.390 | 0.325 | 0.153 | 0.742 | 0.593 |
Reference LiDAR-Based Net | DTM | DSM | DTM | DSM | DTM | DSM | DTM | DSM |
---|---|---|---|---|---|---|---|---|
PBTV_AT | 0_25 | 0_25 | 3_25 | 3_25 | 0_100 | 0_100 | 3_100 | 3_100 |
PA_Net | 0.378 | 0.347 | 0.852 | 0.831 | 0.331 | 0.291 | 0.813 | 0.782 |
UA_Net | 0.367 | 0.345 | 0.826 | 0.825 | 0.354 | 0.318 | 0.870 | 0.853 |
F_Net | 0.373 | 0.346 | 0.838 | 0.828 | 0.342 | 0.304 | 0.841 | 0.816 |
KI_Net | 0.294 | 0.263 | 0.817 | 0.805 | 0.305 | 0.265 | 0.832 | 0.805 |
KI_Ords | 0.243 | 0.218 | 0.643 | 0.627 | 0.275 | 0.239 | 0.716 | 0.686 |
PA_Ord1 | 0.250 | 0.229 | 0.607 | 0.579 | 0.271 | 0.243 | 0.661 | 0.623 |
PA_Ord2 | 0.221 | 0.200 | 0.422 | 0.399 | 0.248 | 0.215 | 0.544 | 0.507 |
PA_Ord3 | 0.212 | 0.194 | 0.382 | 0.375 | 0.219 | 0.188 | 0.497 | 0.499 |
PA_Ord4 | 0.208 | 0.189 | 0.386 | 0.391 | 0.216 | 0.188 | 0.475 | 0.484 |
PA_Ord5 | 0.215 | 0.189 | 0.381 | 0.380 | 0.191 | 0.074 | 0.462 | 0.240 |
PA_Ord6 | 0.233 | 0.088 | 0.412 | 0.217 | 0.253 | 0.062 | 0.625 | 0.192 |
PA_Ord7 | 0.253 | 0.144 | 0.515 | 0.313 | ||||
UA_Ord1 | 0.223 | 0.209 | 0.543 | 0.528 | 0.273 | 0.254 | 0.667 | 0.652 |
UA_Ord2 | 0.224 | 0.214 | 0.428 | 0.426 | 0.270 | 0.245 | 0.591 | 0.577 |
UA_Ord3 | 0.237 | 0.229 | 0.428 | 0.442 | 0.256 | 0.230 | 0.581 | 0.610 |
UA_Ord4 | 0.241 | 0.227 | 0.448 | 0.470 | 0.279 | 0.177 | 0.616 | 0.454 |
UA_Ord5 | 0.263 | 0.176 | 0.466 | 0.355 | 0.227 | 0.090 | 0.548 | 0.293 |
UA_Ord6 | 0.264 | 0.112 | 0.467 | 0.277 | 0.274 | 0.155 | 0.676 | 0.481 |
UA_Ord7 | 0.274 | 0.155 | 0.557 | 0.335 |
Reference Nets | LiDAR DTMs-Based Nets | |||||
---|---|---|---|---|---|---|
Test Nets | PALSAR DEMs-based Nets | ALOS DSM-based Net | SRTM DEM-based Net | |||
Spatial Resolution | 12.5 m | 12.5 m | 12.5 m | 28.5 m | 28.5 m | 28.5 m |
PBTV_AT | 3_519 | 3_25 | 3_100 | 3_100 | 3_100 | 3_100 |
PA_Net | 0.804 | 0.852 | 0.813 | 0.892 | 0.916 | 0.891 |
UA_Net | 0.900 | 0.826 | 0.870 | 0.940 | 0.920 | 0.912 |
F_Net | 0.849 | 0.838 | 0.841 | 0.915 | 0.918 | 0.902 |
KI_Net | 0.846 | 0.817 | 0.832 | 0.910 | 0.913 | 0.896 |
KI_Ords | 0.776 | 0.643 | 0.716 | 0.828 | 0.816 | 0.793 |
PA_Ord1 | 0.792 | 0.607 | 0.661 | 0.790 | 0.771 | 0.759 |
PA_Ord2 | 0.710 | 0.422 | 0.544 | 0.699 | 0.736 | 0.675 |
PA_Ord3 | 0.789 | 0.382 | 0.497 | 0.691 | 0.638 | 0.515 |
PA_Ord4 | 0.580 | 0.386 | 0.475 | 0.568 | 0.585 | 0.683 |
PA_Ord5 | 0.518 | 0.381 | 0.462 | 0.503 | 0.437 | 0.522 |
PA_Ord6 | 0.412 | 0.625 | ||||
PA_Ord7 | 0.515 | |||||
UA_Ord1 | 0.717 | 0.543 | 0.667 | 0.806 | 0.781 | 0.753 |
UA_Ord2 | 0.658 | 0.428 | 0.591 | 0.809 | 0.730 | 0.730 |
UA_Ord3 | 0.615 | 0.428 | 0.581 | 0.682 | 0.637 | 0.639 |
UA_Ord4 | 0.522 | 0.448 | 0.616 | 0.548 | 0.523 | 0.443 |
UA_Ord5 | 0.749 | 0.466 | 0.548 | 0.742 | 0.554 | 0.654 |
UA_Ord6 | 0.467 | 0.676 | ||||
UA_Ord7 | 0.557 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shawky, M.; Moussa, A.; Hassan, Q.K.; El-Sheimy, N. Pixel-Based Geometric Assessment of Channel Networks/Orders Derived from Global Spaceborne Digital Elevation Models. Remote Sens. 2019, 11, 235. https://doi.org/10.3390/rs11030235
Shawky M, Moussa A, Hassan QK, El-Sheimy N. Pixel-Based Geometric Assessment of Channel Networks/Orders Derived from Global Spaceborne Digital Elevation Models. Remote Sensing. 2019; 11(3):235. https://doi.org/10.3390/rs11030235
Chicago/Turabian StyleShawky, Mohamed, Adel Moussa, Quazi K. Hassan, and Naser El-Sheimy. 2019. "Pixel-Based Geometric Assessment of Channel Networks/Orders Derived from Global Spaceborne Digital Elevation Models" Remote Sensing 11, no. 3: 235. https://doi.org/10.3390/rs11030235
APA StyleShawky, M., Moussa, A., Hassan, Q. K., & El-Sheimy, N. (2019). Pixel-Based Geometric Assessment of Channel Networks/Orders Derived from Global Spaceborne Digital Elevation Models. Remote Sensing, 11(3), 235. https://doi.org/10.3390/rs11030235