A Simplified, Object-Based Framework for Efficient Landslide Inventorying Using LIDAR Digital Elevation Model Derivatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scarp Identification and Initial Processing of DEMs
2.1.1. Preliminary Processing of Digital Elevation Models
2.1.2. Delineation of Scarp Features
2.2. Deposit Mapping
2.3. Assessment of Accuracy
3. Results
3.1. Study Area Datasets
3.1.1. Dixie Mountain Quadrangle
3.1.2. Gales Creek Quadrangle
3.1.3. Big Elk Creek Watershed
3.2. Application of SICCM
4. Discussion
4.1. Quality of SICCM results
4.2. Quantitative Analyses using SICCM Outputs
4.3. Sensitivity of Landslide Inventory Maps to SICCM Inputs
4.4. Influence of Geology on SICCM Performance
5. Conclusions
- SICCM produces landslide deposit inventories that yield some of the key knowledge made available by detailed, but also very time consuming, expert-produced landslide inventory. Deposits that were mapped in Dixie Mountain and Big Elk Creek were shown to be capable of identifying regional landslide distributions and variations in geologic structure. Quantitative analyses using SICCM results provide insight into trends of landslide activity, such as the slope, orientation, and size of landslides in an area.
- Despite the requirement of several input parameters, SICCM produced consistent results for all three study areas using the same input parameters. When model parameters were changed, results changed in a controlled, predictable fashion.
- All processes, from producing scarp lines to mapping deposits, involve simplifications of more complex alternatives to SICCM that facilitates human expert involvement and understanding of outputs.
- The diverse geology of the three study areas did not appear to affect the performance of SICCM at mapping landslide deposits. Instead, other factors, such as the proportion of area mapped as deposits or mapped as a specific geologic unit, account for most variability with results.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brardinoni, F.; Slaymaker, O.; Hassan, M.A. Landslide inventory in a rugged forested watershed: A comparison between air-photo and field survey data. Geomorphology 2003, 54, 179–196. [Google Scholar] [CrossRef]
- Burns, W.J.; Duplantis, S.; Jones, C.B.; English, J.T. LIDAR Data and Landslide Inventory Maps of the North Fork Siuslaw River and Big Elk Creek Watersheds, Lane, Lincoln, and Benton Counties, Oregon; Oregon Department of Geology and Mineral Industries: Portland, OR, USA, 2012.
- Hofmeister, R.J. Slope Failures in Oregon GIS Inventory for three 1996/97 Storm events. Oregon Dep. Geol. Miner. Ind. 2000, 34, 20. [Google Scholar]
- Guzzetti, F.; Cardinali, M.; Reichenbach, P.; Cipolla, F.; Sebastiani, C.; Galli, M.; Salvati, P. Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Eng. Geol. 2004, 73, 229–245. [Google Scholar] [CrossRef]
- Harp, E.L.; Jibson, R.W. Inventory of Landslides Triggered by the 1994 Northridge, California Earthquake. Bull. Seismol. Soc. Am. 1996, 86, S319–S332. [Google Scholar]
- Xu, C.; Xu, X.; Yao, X.; Dai, F. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides 2014, 11, 441–461. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, J.; Qi, X.; Ding, J. Landslides induced by the Wenchuan earthquake and the subsequent strong rainfall event: A case study in the Beichuan area of China. Eng. Geol. 2011, 122, 22–33. [Google Scholar] [CrossRef]
- Malamud, B.D.; Turcotte, D.L.; Guzzetti, F.; Reichenbach, P. Landslide inventories and their statistical properties. Earth Surf. Process. Landf. 2004, 29, 687–711. [Google Scholar] [CrossRef]
- Burns, W.J.; Mickelson, K.A. DOGAMI Special Paper 48, Protocol for Deep Landslide Susceptibility Mapping; Oregon Department of Geology and Mineral Industries: Portland, OR, USA, 2016.
- Hess, D.M.; Leshchinsky, B.A.; Bunn, M.; Benjamin Mason, H.; Olsen, M.J. A simplified three-dimensional shallow landslide susceptibility framework considering topography and seismicity. Landslides 2017, 14, 1677–1697. [Google Scholar] [CrossRef]
- Mahalingam, R.; Olsen, M.J.; O’Banion, M.S. Evaluation of landslide susceptibility mapping techniques using LIDAR-derived conditioning factors (Oregon case study). Geomat. Nat. Hazards Risk 2016, 7, 1884–1907. [Google Scholar] [CrossRef]
- Wieczorek, G.F. Preparing a Detailed Landslide-Inventory Map for Hazard Evaluation and Reduction. Environ. Eng. Geosci. 1984, xxi, 337–342. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Turn. AK, Schuster, RL Landslides Investig. Mitigation, Spec. Rep. 247; Tansportation Research Board: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Wills, C.J.; McCrink, T.P. Comparing landslide inventories: The map depends on the method. Environ. Eng. Geosci. 2002, 8, 279–293. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Poesen, J.; Verstraeten, G.; Vanacker, V.; Moeyersons, J.; Nyssen, J.; van Beek, L.P.H. The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology 2005, 67, 351–363. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Poesen, J.; Verstraeten, G.; Vanacker, V.; Nyssen, J.; Moeyersons, J.; van Beek, L.P.H.; Vandekerckhove, L. Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf. Process. Landf. 2007, 32, 754–769. [Google Scholar] [CrossRef]
- Schulz, W.H. Landslides Mapped Using LIDAR Imagery; United States Geological Survey: Seattle, WA, USA, 2004; Volume 4.
- Ortuño, M.; Guinau, M.; Calvet, J.; Furdada, G.; Bordonau, J.; Ruiz, A.; Camafort, M. Potential of airborne LIDAR data analysis to detect subtle landforms of slope failure: Portainé, Central Pyrenees. Geomorphology 2017, 295, 364–382. [Google Scholar] [CrossRef]
- Burns, W.J.; Madin, I.P. Protocol for Inventory Mapping of Landslide Deposits from Light Detection and Ranging (LIDAR) Imagery; Oregon Department of Geology and Mineral Industries: Portland, OR, USA, 2009.
- McKean, J.; Roering, J. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 2004, 57, 331–351. [Google Scholar] [CrossRef]
- Berti, M.; Corsini, A.; Daehne, A. Comparative analysis of surface roughness algorithms for the identification of active landslides. Geomorphology 2013, 182, 1–18. [Google Scholar] [CrossRef]
- Korzeniowska, K.; Pfeifer, N.; Landtwing, S. Mapping gullies, dunes, lava fields, and landslides via surface roughness. Geomorphology 2018, 301, 53–67. [Google Scholar] [CrossRef]
- Shi, W.; Deng, S.; Xu, W. Extraction of multi-scale landslide morphological features based on local Gi* using airborne LIDAR-derived DEM. Geomorphology 2018, 303, 229–242. [Google Scholar] [CrossRef]
- Booth, A.M.; Roering, J.J.; Perron, J.T. Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology 2009, 109, 132–147. [Google Scholar] [CrossRef]
- Glenn, N.F.; Streutker, D.R.; Chadwick, D.J.; Thackray, G.D.; Dorsch, S.J. Analysis of LIDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 2006, 73, 131–148. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Kerle, N.; Poesen, J.; Hervás, J. Object-oriented identification of forested landslides with derivatives of single pulse LIDAR data. Geomorphology 2012, 173–174, 30–42. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Wang, Y.; Chen, G.; Liu, S. Forested landslide detection using LIDAR data and the random forest algorithm: A case study of the Three Gorges, China. Remote Sens. Environ. 2014, 152, 291–301. [Google Scholar] [CrossRef]
- Li, X.; Cheng, X.; Chen, W.; Chen, G.; Liu, S. Identification of forested landslides using LIDAR data, object-based image analysis, and machine learning algorithms. Remote Sens. 2015, 7, 9705–9726. [Google Scholar] [CrossRef]
- Pawłuszek, K.; Borkowski, A. Landslides Identification Using Airborne Laser Scanning Data Derived Topographic Terrain Attributes and Support Vector Machine Classification. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B8, 145–149. [Google Scholar] [CrossRef]
- Leshchinsky, B.A.; Olsen, M.J.; Tanyu, B.F. Contour Connection Method for automated identification and classification of landslide deposits. Comput. Geosci. 2015, 74, 27–38. [Google Scholar] [CrossRef]
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook—A Guide to Understanding Landslides. Available online: https://pubs.usgs.gov/circ/1325/ (accessed on 9 October 2018).
- Booth, A.M.; LaHusen, S.R.; Duvall, A.R.; Montgomery, D.R. Holocene history of deep-seated landsliding in the North Fork Stillaguamish River valley from surface roughness analysis, radiocarbon dating, and numerical landscape evolution modeling. JGR Earth Surf. 2017, 122, 456–472. [Google Scholar] [CrossRef]
- Lashermes, B.; Foufoula-Georgiou, E.; Dietrich, W.E. Channel network extraction from high resolution topography using wavelets. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Roering, J.J.; Marshall, J.; Booth, A.M.; Mort, M.; Jin, Q. Evidence for biotic controls on topography and soil production. Earth Planet. Sci. Lett. 2010, 298, 183–190. [Google Scholar] [CrossRef]
- Burrough, P.; McDonnell, R.A. Principles of Geographical Information Systems; Oxford University Press: London, UK, 1998; Volume 330. [Google Scholar] [CrossRef]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative Analysis of Land Surface Topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Gaidzik, K.; Ramírez-Herrera, M.T.; Bunn, M.; Leshchinsky, B.A.; Olsen, M.; Regmi, N.R. Landslide manual and automated inventories, and susceptibility mapping using LIDAR in the forested mountains of Guerrero, Mexico. Geomat. Nat. Hazards Risk 2017, 8. [Google Scholar] [CrossRef]
- De Smith, M.J.; Goodchild, M.F.; Longley, P.A.; De Smith, M.J. Geospatial Analysis; Matador: Leicester, UK, 2015; ISBN 1905886608. [Google Scholar]
- O’Callaghan, J.F.; Mark, D.M. The extraction of drainage networks from digital elevation data. Comput. Vis. Graph. Image Process. 1984, 27, 247. [Google Scholar] [CrossRef]
- Zhan, C. A Hybrid Line Thinning Approach. In Auto-Carto 11; American Society for Photogrammetry and Remote Sensing: Minneapolis, MN, USA, 1993; pp. 396–405. [Google Scholar]
- Perry, J.W.; Kent, A.; Berry, M.M. Machine literature searching X. Machine language; factors underlying its design and development. Am. Doc. 1955, 6, 242–254. [Google Scholar] [CrossRef]
- LIDAR Remote Sensing Data Collection: Department of Geology & Mineral Industries, Oregon Department of Forestry, Puget Sound LIDAR Consortium; Oregon Department of Geology and Mineral Industries: Portland, OR, USA, 2007.
- LIDAR Remote Sensing Data Collection: Department of Geology and Mineral Industries Central Coast Study Area; Oregon Department of Geology and Mineral Industries: Portland, OR, USA, 2012.
- Burns, W.J.; Mickelson, K.A.; Duplantis, S.; Madin, I.P. IMS-44, Landslide Inventory Maps of the Dixie Mountain Quadrangle, Washington, Multnomah, and Columbia Counties, Oregon; Nature of the Northwest Information Center: Portland, OR, USA, 2012.
- Burns, W.J.; Duplantis, S.; Mickelson, K.A. IMS-46, Landslide Inventory Maps of the Gales Creek Quadrangle, Washington County, Oregon; Nature of the Northwest Information Center: Portland, OR, USA, 2012. [Google Scholar]
- Madin, I.P.; Niewendorp, C.A. Preliminary Geologic Map of the Dixie Mountain 7.5’ Quadrangle, Columbia, Multnomah, and Washington Counties, Oregon; Oregon Department of Geology and Mineral Industries: Portland, OR, USA, 2008.
- Yeats, R.S.; Graven, E.P.; Werner, K.S.; Goldfinger, C.; Popowski, T.A. Tectonics of the Willamette Valley, Oregon. In Assessing Earthquake Hazards and Reducing Risk in the Pacific Northwest; Volume I; Rogers, A.M., Walsh, T.J., Kockleman, W.J., Priest, G.R., Eds.; United States Geological Survey: Reston, VA, USA, 1996; pp. 183–222. [Google Scholar]
- McClaughry, J.D.; Wiley, T.J.; Ferns, M.L.; Madin, I.P. Digital Geologic Map of the Southern Willamette Valley, Benton, Lane, Linn, Marion, and Polk Counties, Oregon; Oregon Department of Geology and Mineral Industries: Portland, OR, USA, 2010.
- Smith, R.L.; Roe, W.P. Oregon Geologic Data Compilation (OGDC), Release 6; Oregon Department of Geology and Mineral Industries: Portland, OR, USA, 2015.
Dixie Mountain Quadrangle | Gales Creek Quadrangle | Big Elk Creek Watershed | |
---|---|---|---|
DEM cell size | 0.91 m | 0.91 m | 0.91 m |
Size of area mapped | 143 km2 | 144 km2 | 230 km2 |
Percent of area mapped as landslide deposits in existing inventory | 39% | 16% | 33% |
Number of deposit features mapped | 739 | 698 | 1189 |
Mean slope (6.1-m DEM) | 15.4° | 11.1° | 25.1° |
Standard deviation of slope (6.1-m DEM) | 10.6° | 10.5° | 12.3° |
Elevation range | ~0 m to 540 m | 50 m to 550 m | ~0 m to 1030 m |
Date of LIDAR acquisition | 3/15/07–5/09/07 | 9/02/11–11/22/11 | |
Reference for LIDAR data | [42] | [43] | |
Reference for existing inventory | [44] | [45] | [2] |
Dixie Mountain Quadrangle | Gales Creek Quadrangle | Big Elk Creek Watershed | |
---|---|---|---|
Mapping cell size | 6.1 m | 6.1 m | 6.1 m |
Mixture threshold | 4.29 deg-m | 4.02 deg-m | 6.02 deg-m |
Accumulation area used to define stream channels | 2 ha | 2 ha | 2 ha |
Time spent on automated processes for scarp lines | 6 min | 6 min | 12 min |
Time spent reassigning polygons for semi-automatic scarp lines | 6 min | 4 min | 10 min |
Branch parameter, Bn | 5 | 5 | 5 |
Active slope, Δactive | 2 deg | 2 deg | 2 deg |
Node spacing, Ln | 6 m | 6 m | 6 m |
Contour interval, ΔEz | 6 m | 6 m | 6 m |
Time spent on automated processes for deposit mapping (semi-automatic) | 45 min (47 min) | 40 min (45 min) | 204 min (223 min) |
Number of deposit features (semi-automatic) | 1144 (1267) | 792 (910) | 2644 (2758) |
Area mapped as landslide deposits (semi-automatic) | 41 km2 (51 km2) | 30 km2 (33 km2) | 145 km2 (156 km2) |
Minimum landslide area | 58 m2 | 68 m2 | 28 m2 |
Mean landslide area | 36,077 m2 | 37,589 m2 | 54,748 m2 |
Maximum landslide area | 1,096,829 m2 | 1,059,723 m2 | 1,010,183 m2 |
Study Area | Scarp Lines | TP | FP | TN | FN | Accuracy | Precision | Recall |
---|---|---|---|---|---|---|---|---|
Dixie Mountain | Automatic | 0.15 | 0.03 | 0.59 | 0.24 | 0.74 | 0.86 | 0.39 |
Semi-Automatic | 0.21 | 0.05 | 0.56 | 0.18 | 0.77 | 0.80 | 0.54 | |
Gales Creek | Automatic | 0.07 | 0.06 | 0.78 | 0.09 | 0.85 | 0.52 | 0.43 |
Semi-Automatic | 0.07 | 0.06 | 0.78 | 0.09 | 0.85 | 0.52 | 0.44 | |
Big Elk Creek | Automatic | 0.21 | 0.15 | 0.52 | 0.12 | 0.73 | 0.58 | 0.63 |
Semi-Automatic | 0.21 | 0.15 | 0.52 | 0.12 | 0.73 | 0.59 | 0.65 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunn, M.D.; Leshchinsky, B.A.; Olsen, M.J.; Booth, A. A Simplified, Object-Based Framework for Efficient Landslide Inventorying Using LIDAR Digital Elevation Model Derivatives. Remote Sens. 2019, 11, 303. https://doi.org/10.3390/rs11030303
Bunn MD, Leshchinsky BA, Olsen MJ, Booth A. A Simplified, Object-Based Framework for Efficient Landslide Inventorying Using LIDAR Digital Elevation Model Derivatives. Remote Sensing. 2019; 11(3):303. https://doi.org/10.3390/rs11030303
Chicago/Turabian StyleBunn, Michael D., Ben A. Leshchinsky, Michael J. Olsen, and Adam Booth. 2019. "A Simplified, Object-Based Framework for Efficient Landslide Inventorying Using LIDAR Digital Elevation Model Derivatives" Remote Sensing 11, no. 3: 303. https://doi.org/10.3390/rs11030303
APA StyleBunn, M. D., Leshchinsky, B. A., Olsen, M. J., & Booth, A. (2019). A Simplified, Object-Based Framework for Efficient Landslide Inventorying Using LIDAR Digital Elevation Model Derivatives. Remote Sensing, 11(3), 303. https://doi.org/10.3390/rs11030303