Satellite Soil Moisture for Agricultural Drought Monitoring: Assessment of SMAP-Derived Soil Water Deficit Index in Xiang River Basin, China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area and In Situ Data
2.2. Reference Soil Moisture from China Land Soil Moisture Data Assimilation System
2.3. SMAP L2 Soil Moisture
3. Methodology
- Evaluate the accuracy of SMAP soil moisture and SMAP_SWDI;
- Analyze the temporary and spatial drought conditions in the Xiang River Basin based on SMAP_SWDI;
- Calculate the AWD values with in situ meteorological data;
- Compare the performance of AWD and SMAP_SWDI on both temporal and spatial scales.
3.1. Soil Water Deficit Index (SWDI)
3.2. Percentage of Drought Weeks (PDW)
3.3. Atmospheric Water Deficit (AWD)
3.4. Evaluation Indices
4. Results and Discussion
4.1. Evaluation of SMAP Soil Moisture
4.2. Drought Estimation in the Xiang River Basin
4.2.1. Temporal and Spatial Analysis of SMAP_SWDI
4.2.2. Temporal and Spatial Analysis of PDWs
4.3. Comparison between SMAP_SWDI and AWD
5. Conclusions
- The SMAP soil moisture had acceptable accuracy and relatively good performance in most of Xiang River Basin. In terms of R-values between the soil moisture datasets obtained from CLSMDAS and SMAP, around 70% performed well and only 10% performs poorly at the grid sale. At the regional scale, the SMAP soil moisture captured the features of CLSMDAS soil moisture with the R-value 0.62.
- Severe droughts mainly occurred from mid-June to the end of September. The severity of droughts gradually decreased in mid-May from 2015 to 2016. Severe droughts were only detected in the south and northeast of the Xiang River Basin in 2015. Early August of 2016 suffered the most severe and wide range of droughts, with the driest area mainly concentrated in the northern part of the basin. Severe drought was mainly concentrated in the northern part of the Xiang River Basin at the end of November during 2015 and 2017.
- The SMAP showed relatively good performance in drought monitoring in the Xiang River Basin with a high Pearson correlation coefficient (mean value equals to 0.6) and high drought weeks probability of detection (vary from 0.7 to 0.9) between SWDI and AWD.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tian, Y.; Xu, Y.P.; Wang, G. Agricultural drought prediction using climate indices based on Support Vector Regression in Xiangjiang River basin. Sci. Total Environ. 2018, 622, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Chen, X.; Lai, C.; Wang, Z.; Lian, Y.; Yu, H.; Wu, X. Drought monitoring utility of satellite-based precipitation products across mainland China. J. Hydro. 2019, 568, 343–359. [Google Scholar] [CrossRef]
- Quiring, S.M.; Papakryiakou, T.N. An evaluation of agricultural drought indices for the Canadian prairies. Agric. For. Meteorol. 2003, 118, 49–62. [Google Scholar] [CrossRef]
- Wu, H.; Wilhite, D. An Operational Agricultural Drought Risk Assessment Model for Nebraska, USA. Nat. Hazards. 2004, 33, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Rhee, J.Y.; Im, J.H.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Gao, X.X.; Wei, S.U.; Huang, W.H.; Kui-Dong, L.U.; Gao, S. Integrated Assessment for Agricultural Risk of Drought Disaster in Hunan Province Based on GIS. Hunan Agric. Sci. 2010, 23, 158–162. [Google Scholar]
- Zhang, J.M.; Liao, Y.F.; Peng, J.D.; Zhou, J.J.; Tan, X.; Center, H.C.; Bureau, Z.M. Spatial and Temporal Variation of Meteorological Drought Days in Hunan Province. Chin. J. Agrometeorol. 2013, 34, 621–628. [Google Scholar]
- Hosseinizadeh, A.; Seyedkaboli, H.; Zareie, H.; Akhondali, A.; Farjad, B. Impact of climate change on the severity, duration, and frequency of drought in a semi-arid agricultural basin. Geoenviron. Disaster. 2015, 2, 1–9. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.; Barbosa, H. Evaluation of the SMOS-Derived Soil Water Deficit Index as Agricultural Drought Index in Northeast of Brazil. Water 2017, 9, 377. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Q.; Liu, X.; Leng, G.; Zhe, L. Soil moisture drought monitoring and forecasting using satellite and climate model data over Southwest China. J. Hydrometeorol. 2017, 18, 5–23. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Park, S.; Rhee, J. Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula. Agric. For. Meteorol. 2017, 237, 257–269. [Google Scholar] [CrossRef]
- Mishra, A.; Vu, T.; Valiyaveettil, A.; Entekhabi, D. Drought Monitoring with Soil Moisture Active Passive (SMAP) Measurements. J. Hydrol. 2017, 552, 620–632. [Google Scholar] [CrossRef]
- Liu, D.; Mishra, A.K.; Yu, Z. Evaluating uncertainties in multi-layer soil moisture estimation with support vector machines and ensemble Kalman filtering. J. Hydrol. 2016, 538, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Njoku, E.G.; Entekhabi, D. Passive microwave remote sensing of soil moisture. Remote Sens. Environ. 1996, 184, 135–151. [Google Scholar] [CrossRef]
- Xi, J.; Wen, J.; Hui, T.; Zhang, T. Applicability evaluation of AMSR-E remote sensing soil moisture products in Qinghai-Tibet plateau. Trans. Chin. Soc. Agric. Eng. 2014, 30, 194–202. [Google Scholar]
- Zhuang, Y.; Shi, C.; Shen, R.; Jiang, L.; Wang, S. Quality evaluation of multi-microwave remote sensing soil moisture products over China. J. Meteorol. Sci. 2015, 35, 289–296. [Google Scholar]
- Chew, C.C.; Small, E.E. Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture. Geophys. Res. Lett. 2018, 45, 4049–4057. [Google Scholar] [CrossRef]
- Kim, H.; Lakshmi, V. Use of Cyclone Global Navigation Satellite System (CyGNSS) Observations for Estimation of Soil Moisture. Geophys. Res. Lett. 2018, 45, 8272–8282. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, J.; Wang, S.; Yong, C.; Ge, J.; You, W. Application and accuracy of cosmic-ray neutron probes in three soil textures on the Loess Plateau, China. J. Hydrol. 2019, 569, 449–461. [Google Scholar] [CrossRef]
- Jakobi, J.; Huisman, J.A.; Vereecken, H.; Diekkrüger, B.; Bogena, H.R. Cosmic Ray Neutron Sensing for Simultaneous Soil Water Content and Biomass Quantification in Drought Conditions. Water Resour. Res. 2018, 54, 7383–7402. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Kim, H.; Choi, M. Evaluation of the soil water content using cosmicray neutron probe in a heterogeneous monsoon climate-dominated region. Adv. Water Resour. 2017, 108, 125–138. [Google Scholar] [CrossRef]
- Ahlmer, A.K.; Cavalli, M.; Hansson, K.; Koutsouris, A.J.; Crema, S.; Kalantari, Z. Soil moisture remote-sensing applications for identification of flood-prone areas along transport infrastructure. Environ. Earth Sci. 2018, 77. [Google Scholar] [CrossRef]
- Bindlish, R.; Crow, W.T.; Jackson, T.J. Role of Passive Microwave Remote Sensing in Improving Flood Forecasts. IEEE Geosci. Remote Sens. Lett. 2009, 6, 112–116. [Google Scholar] [CrossRef]
- Feng, Y.; Hao, Q.Z.; Song, L.M.; Jiao, W.Y. Progress in soil moisture estimation from remote sensing data for agricultural drought monitoring. J. Nat. Disaster. 2006, 15, 114–121. [Google Scholar]
- Su, Z.; Yacob, A.; Wen, J.; Roerink, G.; He, Y.; Gao, B.; Boogaard, H.; Diepen, C.V. Assessing relative soil moisture with remote sensing data: theory, experimental validation, and application to drought monitoring over the North China Plain. Phys. Chem. Earth. 2003, 28, 89–101. [Google Scholar] [CrossRef]
- Zhang, Y.; Hong, Y.; Wang, X.G.; Gourley, J.J.; Gao, J.D.; Vergara, H.J.; Yong, B. Assimilation of Passive Microwave Streamflow Signals for Improving Flood Forecasting: A First Study in Cubango River Basin, Africa. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2375–2390. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128–5141. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Wang, W.; Tian, F.; Yang, K. In Improving satellite rainfall estimates over Tibetan plateau using in situ soil moisture observation and SMAP retrievals. Geosci. Remote Sens. Sym. 2017. [Google Scholar] [CrossRef]
- Brocca, L.; Moramarco, T.; Dorigo, W.; Wagner, W. In Assimilation of satellite soil moisture data into rainfall-runoff modeling for several catchments worldwide. Geosci. Remote Sens. Sym. 2014. [Google Scholar] [CrossRef]
- Brocca, L.; Moramarco, T.; Melone, F.; Wagner, W.; Hasenauer, S.; Hahn, S. Assimilation of Surface- and Root-Zone ASCAT Soil Moisture Products Into Rainfall-Runoff Modeling. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2542–2555. [Google Scholar] [CrossRef]
- Lopez, P.L.; Wanders, N.; Schellekens, J.; Renzullo, L.J.; Sutanudjaja, E.H.; Bierkens, M.F.P. Improved large-scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations. Hydrol. Earth Syst. Sci. 2016, 12, 10559–10601. [Google Scholar] [CrossRef]
- Wagner, W.; Hahn, S.; Kidd, R.; Melzer, T.; Bartalis, Z.; Hasenauer, S.; Figa, J.; De, R.P.; Jann, A.; Schneider, S. The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications. Meteorologische Zeitschrift. 2013, 22, 5–33. [Google Scholar] [CrossRef]
- Bartalis, Z.; Wagner, W.; Naeimi, V.; Hasenauer, S.; Scipal, K.; Bonekamp, H.; Figa, J.; Anderson, C. Initial soil moisture retrievals from the METOP-A advanced scatterometer (ASCAT). Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Bai, J.; Cui, Q.; Chen, D.; Yu, H.; Mao, X.; Meng, L.; Cai, Y. Assessment of the SMAP-Derived Soil Water Deficit Index (SWDI-SMAP) as an Agricultural Drought Index in China. Remote Sens. 2018, 10, 1302. [Google Scholar] [CrossRef]
- Colliander, A.; Fisher, J.B.; Halverson, G.; Merlin, O.; Misra, S.; Bindlish, R.; Jackson, T.J.; Yueh, S. Spatial Downscaling of SMAP Soil Moisture Using MODIS Land Surface Temperature and NDVI During SMAPVEX15. IEEE Geosci. Remote Sens. Lett. 2017, 99, 1–5. [Google Scholar] [CrossRef]
- Gruber, A.; Su, C.H.; Zwieback, S.; Crow, W.; Dorigo, W.; Wagner, W. Recent advances in (soil moisture) triple collocation analysis. Int. J. Appl. Earth Obs. Geoinform. 2016, 45, 200–211. [Google Scholar] [CrossRef]
- Liu, D.; Mishra, A.K.; Yu, Z.; Yang, C.; Konapala, G.; Vu, T. Performance of SMAP, AMSR-E and LAI for weekly agricultural drought forecasting over continental United States. J. Hydrol. 2017, 553, 88–104. [Google Scholar] [CrossRef]
- Kim, H.; Parinussa, R.; Konings, A.G.; Wagner, W.; Zohaib, M. Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sens. Environ. 2018, 204, 260–277. [Google Scholar] [CrossRef]
- Su, C.H.; Ryu, D.; Crow, W.T.; Western, A.W. Beyond triple collocation: Applications to soil moisture monitoring. J. Geophys. Res. Atmos. 2014, 119, 6419–6439. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.; Xu, J.; Zeng, J.; Chen, K.-S.; Bai, X.; Lu, H.; Chen, Q.; Zhao, T. Soil Moisture Mapping from Satellites: An Intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over Two Dense Network Regions at Different Spatial Scales. Remote Sens. 2018, 10, 33. [Google Scholar] [CrossRef]
- Konings, A.G.; Piles, M.; Das, N.; Entekhabi, D. L-band vegetation optical depth and effective scattering albedo estimation from SMAP. Remote Sens. Environ. 2017, 198, 460–470. [Google Scholar] [CrossRef]
- Sánchez, N.; Martínez-Fernández, J.; Calera, A.; Torres, E.; Pérez-Gutiérrez, C. Combining remote sensing and in situ soil moisture data for the application and validation of a distributed water balance model (HIDROMORE). Agric. Water Manag. 2010, 98, 69–78. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Zhang, X. Characteristics of Drought and Flood Climate Changes of Xiangjiang River Basin in Recent 50 Years. J. Catastrophol. 2009, 24, 95–101. [Google Scholar]
- Zhang, T.; Zhang, X.; Wu, H.; Shen, L. Analysis of Pan Evaporation Trend and Its Influence Factors in Xiangjiang River Basin. Progressus Inquisitiones De Mutatione Climatis. 2013, 9, 35–42. [Google Scholar]
- Ma, C.; Pan, S.; Wang, G.; Liao, Y.; Xu, Y.P. Changes in precipitation and temperature in Xiangjiang River Basin, China. Theor. Appl. Climatol. 2016, 123, 1–13. [Google Scholar] [CrossRef]
- Velpuri, N.M.; Senay, G.B.; Morisette, J.T. Evaluating New SMAP Soil Moisture for Drought Monitoring in the Rangelands of the US High Plains. Rangelands 2016, 38, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Juan, D.U.; Fei, H.E.; Shi, P.J. Integrated flood risk assessment of Xiangjiang River Basin in China. J. Nat. Disaster. 2006, 15, 38–44. [Google Scholar]
- Shi, C.X.; Xie, Z.H.; Hui, Q.; Liang, M.L.; Yang, X.C. China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci. Chin. 2011, 54, 1430–1440. [Google Scholar] [CrossRef]
- Chen, Z.; Chunxiang, S.; Lin, X.; Xiaolong, H. Simulation and Assessment of Soil Moisture at Different Depths in China Area. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-QXKJ201303020.htm (accessed on 10 February 2019).
- Shi, C.; Xie, Z. A Time Downscaling Scheme of Precipitation by Using Geostationary Meteorological Satellite Data. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-DLKJ200804003.htm (accessed on 10 February 2019).
- Chen, F.; Crow, W.T.; Colliander, A.; Cosh, M.H.; Jackson, T.J.; Bindlish, R.; Reichle, R.H.; Chan, S.K.; Bosch, D.D.; Starks, P.J. Application of Triple Collocation in Ground-Based Validation of Soil Moisture Active/Passive (SMAP) Level 2 Data Products. IEEE J. Sele. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 489–502. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A. A soil water based index as a suitable agricultural drought indicator. J. Hydrol. 2015, 522, 265–273. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.; Herrero-Jiménez, C.M. Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sens. Environ. 2016, 177, 277–286. [Google Scholar] [CrossRef]
- Pablos, M.; Martínez-Fernández, J.; Sánchez, N.; González-Zamora, Á. Temporal and Spatial Comparison of Agricultural Drought Indices from Moderate Resolution Satellite Soil Moisture Data over Northwest Spain. Remote Sens. 2017, 9, 1168. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; Sánchez, N.; González-Zamora, Á.; Gumuzzio, Á.; Herrero-Jiménez, C.M. Feasibility of the SMOS soil moisture for agricultural drought monitoring: Assessment with the Soil Water Deficit Index. Geosci. Remote Sens. Sym. 2015, 976–979. [Google Scholar] [CrossRef]
- Torres, G.M.; Lollato, R.P.; Ochsner, T.E. Comparison of Drought Probability Assessments Based on Atmospheric Water Deficit and Soil Water Deficit. Agron. J. 2013, 105, 428–436. [Google Scholar] [CrossRef]
- Moran, M.S.; Rahman, A.F.; Washburne, J.C.; Goodrich, D.C.; Weltz, M.A. Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland. Agric. For. Meteorol. 1996, 80, 87–109. [Google Scholar] [CrossRef]
- Liu, W.J.; Liu, C.Q.; Zhao, Z.Q.; Xu, Z.F.; Liang, C.S.; Li, L.B.; Feng, J.Y. Elemental and strontium isotopicgeochemistry of the soil profiles developed on limestone and sandstone in karstic terrain on Yunnan-GuizhouPlateau, China: Implications for chemical weathering and parent materials. J. Asian Earth Sci. 2013, 67, 138–152. [Google Scholar] [CrossRef]
- Wang, J.; Zou, B.; Liu, Y.; Tang, Y.; Zhang, X.; Yang, P. Erosion-creep-collapse mechanism of underground soilloss for the karst rocky desertification in Chenqi village, Puding county, Guizhou, China. Environ. Earth Sci. 2014, 72, 2751–2764. [Google Scholar] [CrossRef]
- Chan, S.; Bindlish, R.; O’Neill, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J.; et al. Assessment of the SMAP Passive Soil Moisture Product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1–14. [Google Scholar] [CrossRef]
- Bo, C.; Fang, W.H.; Fei, H.E.; Shi, P.J. Relationship between flood/waterlogging disaster and rainfall in Xiangjiang River Basin. J. Nat. Disaster. 2008, 17, 92–96. [Google Scholar]
- Xiao, Y.; Tang, S.; Chen, H.; Linjuan, H.U. Temporal and spatial trends of precipitation and temperature from 1960 to 2008 in Xiangjiang River Basin. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-RIVE201303003.htm (accessed on 10 February 2019).
- Zou, X.; Ren, G. Droughts Variations in China Based on a Compound Index of Meteorological Drought. Clim. Environ. Res. 2010, 15, 371–378. [Google Scholar]
- Srivastava, P.K. Satellite Soil Moisture: Review of Theory and Applications in Water Resources. Water Resour. Management. 2017, 31, 3161–3176. [Google Scholar] [CrossRef]
SWDI | Drought Category |
---|---|
>0 | No drought |
0~−2 | Mild |
−2~−5 | Moderate |
−5~−10 | Severe |
<−10 | Extreme |
Station | CC | POD | PDW of AWD (%) | PDW of SMAP_SWDI (%) |
---|---|---|---|---|
Malingpo | 0.55 | 0.73 | 51.44 | 69.32 |
Pingjiang | 0.60 | 0.85 | 45.45 | 72.73 |
Changsha | 0.52 | 0.72 | 48.86 | 69.32 |
Shaoyang | 0.67 | 0.91 | 47.73 | 71.59 |
Nanyue | 0.57 | 0.93 | 30.68 | 68.18 |
Hengyang | 0.57 | 0.68 | 53.41 | 62.50 |
Changning | 0.45 | 0.80 | 51.14 | 65.91 |
Daoxian | 0.66 | 0.84 | 48.86 | 67.05 |
Chenzhou | 0.57 | 0.37 | 43.18 | 31.82 |
Lianxian | 0.63 | 0.78 | 52.27 | 67.05 |
Yuanjiang | 0.43 | 0.23 | 50.00 | 29.55 |
Shuangfeng | 0.62 | 0.71 | 50.00 | 59.09 |
Yongzhou | 0.68 | 0.79 | 47.73 | 63.64 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Luo, Y.; Xu, Y.-P.; Tian, Y.; Yang, T. Satellite Soil Moisture for Agricultural Drought Monitoring: Assessment of SMAP-Derived Soil Water Deficit Index in Xiang River Basin, China. Remote Sens. 2019, 11, 362. https://doi.org/10.3390/rs11030362
Zhu Q, Luo Y, Xu Y-P, Tian Y, Yang T. Satellite Soil Moisture for Agricultural Drought Monitoring: Assessment of SMAP-Derived Soil Water Deficit Index in Xiang River Basin, China. Remote Sensing. 2019; 11(3):362. https://doi.org/10.3390/rs11030362
Chicago/Turabian StyleZhu, Qian, Yulin Luo, Yue-Ping Xu, Ye Tian, and Tiantian Yang. 2019. "Satellite Soil Moisture for Agricultural Drought Monitoring: Assessment of SMAP-Derived Soil Water Deficit Index in Xiang River Basin, China" Remote Sensing 11, no. 3: 362. https://doi.org/10.3390/rs11030362
APA StyleZhu, Q., Luo, Y., Xu, Y. -P., Tian, Y., & Yang, T. (2019). Satellite Soil Moisture for Agricultural Drought Monitoring: Assessment of SMAP-Derived Soil Water Deficit Index in Xiang River Basin, China. Remote Sensing, 11(3), 362. https://doi.org/10.3390/rs11030362