Land Cover Changes and Their Driving Mechanisms in Central Asia from 2001 to 2017 Supported by Google Earth Engine
Abstract
:1. Introduction
- (1)
- How can land cover mapping across national scales be completed quickly and accurately?
- (2)
- What has the land cover change trend in Central Asia been over the past 17 years?
- (3)
- How do climate change and human activities affect land cover?
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Technical Process
- With the support of the GEE, the multiyear image synthesis and cloud mask methods were applied to obtain the TOA composite data without cloud or shadow coverage each year from 2001 to 2017.
- With the support of multisource land cover products, training and verification samples were carefully deployed according to the “complete consistency” and “temporal stability” principles. Then, the land cover attributes were extracted for samples.
- The RF model training was applied based on Landsat satellite images and auxiliary data. The annual mapping of land cover in Central Asia was performed by applying the training rules.
- Based on analyses of climate change and economic and social development factors, the mechanisms of land cover change in the area were explored with multiple stepwise regression modeling.
2.3.2. Satellite Imagery
2.3.3. Training Point Selection
- Based on GlobeLand30, all land cover products, e.g., MCD12Q1, GlobCover2009, the GFCD, and the GFSSAD, were reclassified, and the land cover type in Central Asia was divided into 9 classes [39] (see Supplementary Material Tables S1 and S2).
- GlobeLand30 (2010), MCD12Q1 (2001–2013, 13 years), GlobCover2009, the GFCD (2000), and the GFSSAD (2000) were overlaid, and pixels with completely consistent land cover types that had not changed from 2001 to 2017 were selected. MCD12Q1, GlobCover2009, and GFSSAD were reduced to 30-m resolutions in the GEE using the reduceResolution function. GEE performs nearest neighbor resampling by default.
- Among the selected pixels, the training sample points and verification sample points were randomly selected, and the number of points was slightly adjusted according to the area ratios of the different land cover types.
2.3.4. Land Mapping and Validation
2.3.5. Multiple Stepwise Regression
3. Results
3.1. Quality Assessment
3.2. Spatial Distribution of Land Cover
3.3. Spatial-Temporal Changes in Land Cover
3.4. Mechanisms of Land Cover Change
4. Discussion
4.1. Advantages
4.2. Uncertainties
4.3. Complexity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Batunacun; Nendel, C.; Hu, Y.F.; Lakes, T. Land-use change and land degradation on the Mongolian Plateau from 1975 to 2015-A case study from Xilingol, China. Land Degrad. Dev. 2018, 29, 1595–1606. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.W.M.J.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Bartholome, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Iwao, K.; Nishida, K.; Kinoshita, T.; Yamagata, Y. Validating land cover maps with Degree Confluence Project information. Geophys. Res. Lett. 2006, 33, 265–288. [Google Scholar] [CrossRef]
- Gong, P.; Yu, L.; Hu, L.; Li, X.; Li, C.; Zhang, H.; Zheng, Y.; Wang, J.; Zhao, Y. Towards a common validation sample set for global land-cover mapping. Int. J. Remote Sens. 2014, 35, 4795–4814. [Google Scholar]
- Chen, J.; Jin, C.; Liao, A.; Xing, C.; Chen, L.; Chen, X.; Shu, P.; Gang, H.; Zhang, H.; Chaoying, H.E. Concepts and Key Techniques for 30 m Global Land Cover Mapping. Acta Geod. Cartogr. Sin. 2014, 43, 551–557. [Google Scholar]
- Midekisa, A.; Holl, F.; Savory, D.J.; Andradepacheco, R.; Gething, P.W.; Bennett, A.; Sturrock, H. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing. PLoS ONE 2017, 12, e0184926. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, Y.; Batunacun. An automatic approach for land-change detection and land updates based on integrated NDVI timing analysis and the CVAPS method with GEE support. ISPRS J. Photogramm. Remote Sens. 2018, 146, 347–359. [Google Scholar] [CrossRef]
- Akar, Ö.; Güngör, O. Classification of Multispectral Images Using Random Forest Algorithm. J. Geod. Geoinf. 2013, 1, 105–112. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef]
- Nyland, K.E.; Gunn, G.E.; Shiklomanov, N.I.; Engstrom, R.N.; Streletskiy, D.A. Land Cover Change in the Lower Yenisei River Using Dense Stacking of Landsat Imagery in Google Earth Engine. Remote Sens. 2018, 10, 1226. [Google Scholar] [CrossRef]
- Markert, K.; Schmidt, C.; Griffin, R.; Flores, A.; Poortinga, A.; Saah, D.; Muench, R.; Clinton, N.; Chishtie, F.; Kityuttachai, K.; et al. Historical and Operational Monitoring of Surface Sediments in the Lower Mekong Basin Using Landsat and Google Earth Engine Cloud Computing. Remote Sens. 2018, 10, 909. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Berrien Moore, I. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Goldblatt, R.; You, W.; Hanson, G.; Khandelwal, A. Detecting the Boundaries of Urban Areas in India: A Dataset for Pixel-Based Image Classification in Google Earth Engine. Remote Sens. 2016, 8, 634. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- De Alban, J.D.T.; Connette, G.M.; Oswald, P.; Webb, E.L. Combined Landsat and L-Band SAR Data Improves Land Cover Classification and Change Detection in Dynamic Tropical Landscapes. Remote Sens. 2018, 10, 306. [Google Scholar] [CrossRef]
- Puigdefabregas, J. Ecological impacts of global change on drylands and their implications for desertification. Land Degrad. Dev. 1998, 9, 393–406. [Google Scholar] [CrossRef]
- Yang, G. Land Use and Land Cover Change and Regional Economic Development: The Revelation of the Change in Cropland Area in the Yangtze River Deltaduring the Past 50 Years. Acta Geogr. Sin. 2004, 59, 41–46. [Google Scholar]
- Ambinakudige, S.; Choi, J. Global coffee market influence on land-use and land-cover change in the Western Ghats of India. Land Degrad. Dev. 2009, 20, 327–335. [Google Scholar] [CrossRef]
- Hu, Y.; Nacun, B. An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990–2015. Sustainability 2018, 10, 4048. [Google Scholar] [CrossRef]
- Zou, J.; Ding, J.; Yang, S. Spatial and temporal variation analysis of ecosystem water use efficiency in Central Asia and Xinjiang in recent 15 years. Geogr. Res. 2017, 36, 1742–1754. [Google Scholar]
- Kasimu, A.; Tang, B.; Maimaitiming, A. Study on spatio-temporal dynamics of urban expansion in five central Asian cities based on remote sensing data. Hum. Geogr. 2012, 4, 83–87. [Google Scholar]
- Klein, I.; Gessner, U.; Kuenzer, C. Regional land cover mapping and change detection in Central Asia using MODIS time-series. Appl. Geogr. 2012, 35, 219–234. [Google Scholar] [CrossRef]
- Conrad, C.; Dech, S.W.; Hafeez, M.; Lamers, J.; Martius, C.; Strunz, G.J.I.; Systems, D. Mapping and assessing water use in a Central Asian irrigation system by utilizing MODIS remote sensing products. Irrig. Drain. Syst. 2007, 21, 197–218. [Google Scholar] [CrossRef]
- Dietz, A.; Conrad, C.; Kuenzer, C.; Gesell, G.; Dech, S. Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data. Remote Sens. 2014, 6, 12752–12775. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Li, J.; Yang, L. Changes of inland lake area in arid Central Asia during 1975–2007: A remote-sensing analysis. J. Lake Sci. 2011, 23, 80–88. [Google Scholar]
- Li, D.; Zhao, X.; Li, X. Remote sensing of human beings—A perspective from nighttime light. Acta Geod. Cartogr. Sin. 2016, 19, 69–79. [Google Scholar] [CrossRef]
- Defourny, P.; Schouten, L.; Bartalev, S.; Bontemps, S.; Cacetta, P.; Wit, A.J.W.D.; Bella, C.D.; Gérard, B.; Giri, C.; Gond, V. Accuracy assessment of a 300 m global land cover map: The GlobCover experience. New Libr. World 2009, 112, 236–247. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2014, 96, 197–210. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Q.; Dai, Z.; Huang, M.; Yan, H. Agreement analysis of multi-sensor satellite remote sensing derived land cover products in the Europe Continent. Geogr. Res. 2015, 34, 1839–1852. [Google Scholar]
- Hsin, T.Y.; Douglas, S.; John, W. Comparison of Object-Based Image Analysis Approaches to Mapping New Buildings in Accra, Ghana Using Multi-Temporal QuickBird Satellite Imagery. Int. J. Remote Sens. 2011, 3, 2707–2726. [Google Scholar]
- Dara, A.; Baumann, M.; Kuemmerle, T.; Pflugmacher, D.; Rabe, A.; Griffiths, P.; Hölzel, N.; Kamp, J.; Freitag, M.; Hostert, P. Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series. Remote Sens. Environ. 2018, 213, 49–60. [Google Scholar] [CrossRef]
- Zhang, G.; Biradar, C.M.; Xiao, X.; Dong, J.; Zhou, Y.; Qin, Y.; Zhang, Y.; Liu, F.; Ding, M.; Thomas, R.J. Exacerbated grassland degradation and desertification in Central Asia during 2000–2014. Ecol. Appl. 2018, 28, 442–456. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, Q.; Liu, Y.; Li, J.; Ren, W. Index System and Transferring Methods to Build the National Society and Economy Grid Database. J. Geo-Inf. Sci. 2011, 13, 573–578. [Google Scholar] [CrossRef]
Data | Data Sources | Year(s) | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|
Landsat * | http://landsat.usgs.gov/ | 2001–2017 | 30 m | 16 days |
SRTM3 * | http://www2.jpl.nasa.gov/srtm/ | 2000 | 30 m | — |
DMSP/OLS * | https://ngdc.noaa.gov/eog/dmsp/ | 2001–2013 | 30 arc seconds | 1 year |
NPP/VIIRS * | https://ngdc.noaa.gov/eog/viirs/ | 2012–2017 | 15 arc seconds | 1 month |
MCD12Q1.051 * | https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1 | 2001–2013 | 500 m | 1 year |
GlobCover * | http://dup.esrin.esa.int/page_globcover.php | 2009 | 300 m | — |
GFCD * | http://earthenginepartners.appspot.com/science-2013-global-forest | 2000 | 30 m | — |
GFSSAD * | http://geography.wr.usgs.gov/science/croplands/ | 2000 | 1000 m | — |
GlobeLand30 | http://www.globeland30.com | 2010 | 30 m | — |
PERSIANN-CDR * | https://data.nodc.noaa.gov/cgi-bin/ | 2001–2017 | 0.25 arc degrees | 1 day |
TerraClimate * | http://www.climatologylab.org/terraclimate.html | 2001–2017 | 2.5 arc minutes | 1 month |
GLDAS-2.1 * | http://ldas.gsfc.nasa.gov/gldas/ | 2001–2017 | 0.25 arc degrees | 3 h |
Land Cover | Classification Accuracy | |
---|---|---|
UA | PA | |
Forest | 0.95 ± 0.03 | 0.95 ± 0.03 |
Grassland | 0.92 ± 0.02 | 0.90 ± 0.02 |
Shrubland | 0.63 ± 0.09 | 0.77 ± 0.07 |
Cultivated land | 0.83 ± 0.03 | 0.85 ± 0.03 |
Artificial surfaces | 0.63 ± 0.09 | 0.77 ± 0.06 |
Water bodies | 0.97 ± 0.03 | 0.96 ± 0.02 |
Wetland | 0.80 ± 0.09 | 0.80 ± 0.08 |
Permanent snow and ice | 0.96 ± 0.03 | 0.95 ± 0.03 |
Bareland | 0.97 ± 0.01 | 0.94 ± 0.02 |
Overall accuracy | 0.90 ± 0.01 |
Water Bodies and Wetland (km2) | Grassland (km2) | Natural Vegetation (km2) | Cultivated Land (km2) | Artificial Surfaces (km2) | |
---|---|---|---|---|---|
Southern region (T+, P+) | — | — | — | ||
Northern region (T-, P+) | — | — | — | — | |
Five Central Asian countries | — | — | — | ||
Xinjiang, China | — | — | — | ||
Study area | — | — | — |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Hu, Y. Land Cover Changes and Their Driving Mechanisms in Central Asia from 2001 to 2017 Supported by Google Earth Engine. Remote Sens. 2019, 11, 554. https://doi.org/10.3390/rs11050554
Hu Y, Hu Y. Land Cover Changes and Their Driving Mechanisms in Central Asia from 2001 to 2017 Supported by Google Earth Engine. Remote Sensing. 2019; 11(5):554. https://doi.org/10.3390/rs11050554
Chicago/Turabian StyleHu, Yunfeng, and Yang Hu. 2019. "Land Cover Changes and Their Driving Mechanisms in Central Asia from 2001 to 2017 Supported by Google Earth Engine" Remote Sensing 11, no. 5: 554. https://doi.org/10.3390/rs11050554
APA StyleHu, Y., & Hu, Y. (2019). Land Cover Changes and Their Driving Mechanisms in Central Asia from 2001 to 2017 Supported by Google Earth Engine. Remote Sensing, 11(5), 554. https://doi.org/10.3390/rs11050554