Pansharpening Using Guided Filtering to Improve the Spatial Clarity of VHR Satellite Imagery
Abstract
:1. Introduction
2. Guided Filtering (GF)-Based Pansharpening Algorithm
2.1. Guided Filtering
2.2. GF-Based Pansharpening Algorithm
2.2.1. Generation of an Optimal Multispectral Image with a Low Spatial Resolution Based on a Pansharpening Framework
2.2.2. Local Injection Gains Based on a Sigmoid Function
2.2.3. Extracting Spatial Details for Pansharpening
3. Materials
4. Experimental Results
4.1. Quality Assessment of Pansharpened Images
4.2. Quality Indices for Estimating the Quality of a Pansharpened Image
4.3. Experimental Results and Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, Y. Understanding image fusion. Photogramm. Eng. Remote Sens. 2004, 70, 653–660. [Google Scholar]
- Vivone, G.; Alparone, L.; Chanussot, J.; Dalla Mura, M.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586. [Google Scholar] [CrossRef]
- González-Audícana, M.; Otazu, X.; Fors, O.; Seco, A. Comparison between Mallat’s and the ‘à trous’ discrete wavelet transform based algorithms for the fusion of multispectral and panchromatic images. Int. J. Remote Sens. 2005, 26, 595–614. [Google Scholar] [CrossRef]
- Choi, J.; Yeom, J.; Chang, A.; Byun, Y.; Kim, Y. Hybrid pansharpening algorithm for high spatial resolution satellite imagery to improve spatial quality. IEEE Geosci. Remote Sens. Lett. 2013, 10, 490–494. [Google Scholar] [CrossRef]
- Choi, J.; Kim, G.; Park, N.; Park, H.; Choi, S. A hybrid pan-sharpening algorithm of VHR satellite images that employs injection gains based on NDVI to reduce computational costs. Remote Sens. 2017, 9, 976. [Google Scholar] [CrossRef]
- Kwan, C.; Choi, J.H.; Chan, S.H.; Zhou, J.; Budavari, B. A super-resolution and fusion approach to enhancing hyperspectral images. Remote Sens. 2018, 10, 1416. [Google Scholar] [CrossRef]
- Selva, M.; Aiazzi, B.; Burera, F.; Chiarantini, L.; Baronti, S. Hyper-sharpening: A first approach on SIM-GA data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3008–3024. [Google Scholar] [CrossRef]
- Dou, W.; Che, Y.; Li, X.; Sui, D.Z. A general framework for component substitution image fusion: An implementation using the fate image fusion method. Comput. Geosci. 2007, 33, 219–228. [Google Scholar] [CrossRef]
- Tu, T.M.; Huang, P.S.; Hung, C.L.; Chang, C.P. A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery. IEEE Geosci. Remote Sens. Lett. 2004, 1, 309–312. [Google Scholar] [CrossRef]
- Rahmani, S.; Strait, M.; Merkurjev, D.; Moeller, M.; Wittman, T. An adaptive IHS pan-sharpening method. IEEE Geosci. Remote Sens. Lett. 2010, 7, 746–750. [Google Scholar] [CrossRef]
- Aiazzi, B.; Baronti, S.; Selva, M. Improving component substitution pansharpening through multivariate regression of MS+ Pan data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3230–3239. [Google Scholar] [CrossRef]
- Garzelli, A.; Nencini, F.; Capobianco, L. Optimal MMSE pan sharpening of very high resolution multispectral images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 228–236. [Google Scholar] [CrossRef]
- Choi, J.; Yu, K.; Kim, Y. A new adaptive component-substitution based satellite image fusion by using partial replacement. IEEE Trans. Geosci. Remote Sens. 2011, 49, 295–309. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, Y.; Chen, Y.; Wu, D. Combining component substitution and multiresolution analysis: A novel generalized BDSD pansharpening algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2867–2875. [Google Scholar] [CrossRef]
- Aiazzi, B.; Baronti, S.; Lotti, F.; Selva, M. A comparison between global and context-adaptive pansharpening of multispectral images. IEEE Geosci. Remote Sens. Lett. 2009, 6, 302–306. [Google Scholar] [CrossRef]
- Oh, K.; Jung, H.; Jeong, N. Pansharpening method for KOMPSAT-2/3 high-spatial resolution satellite image. Korean J. Remote Sens. 2015, 31, 161–170. [Google Scholar] [CrossRef]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O.; Benediktsson, J.A. Quantitative quality evaluation of pansharpened imagery: Consistency versus synthesis. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1247–1259. [Google Scholar] [CrossRef]
- Alparone, L.; Wald, L.; Chanussot, J.; Thomas, C.; Gamba, P.; Bruce, L.M. Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3012–3021. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF-tailored multiscale fusion of high-resolution MS and Pan imagery. Photogramm. Eng. Remote Sens. 2006, 72, 591–596. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2300–2312. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, M.; Choi, J.; Kim, Y. Image fusion of spectrally nonoverlapping imagery using SPCA and MTF-based filters. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2295–2299. [Google Scholar] [CrossRef]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O.; Benediktsson, J.A. MTF-based deblurring using a wiener filter for CS and MRA pansharpening methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2255–2269. [Google Scholar] [CrossRef]
- Massip, P.; Blanc, P.; Wald, L. A method to better account for modulation transfer functions in ARSIS-based pansharpening methods. IEEE Trans. Geosci. Remote Sens. 2012, 50, 800–808. [Google Scholar] [CrossRef]
- Vivone, G.; Simões, M.; Dalla Mura, M.; Restaino, R.; Bioucas-Dias, J.M.; Licciardi, G.A.; Chanussot, J. Pansharpening based on semiblind deconvolution. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1997–2010. [Google Scholar] [CrossRef]
- Vivone, G.; Addesso, P.; Restaino, R.; Dalla Mura, M.; Chanussot, J. Pansharpening based on deconvolution for multiband filter estimation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 540–553. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, Y.; Li, B.; Ding, L. Pansharpening using regression of classified MS and Pan images to reduce color distortion. IEEE Geosci. Remote Sens. Lett. 2015, 12, 28–32. [Google Scholar]
- Restaino, R.; Vivone, G.; Dalla Mura, M.; Chanussot, J. Fusion of multispectral and panchromatic images based on morphological operators. IEEE Trans. Image-Process. 2016, 25, 2882–2895. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jing, L.; Tang, Y.; Wang, L. An image fusion method based on image segmentation for high-resolution remotely-sensed imagery. Remote Sens. 2018, 10, 790. [Google Scholar] [CrossRef]
- Wang, W.; Liu, H.; Liang, L.; Liu, Q.; Xie, G. A regularized model-based pan-sharpening method for remote sensing images with local dissimilarities. Int. J. Remote Sens. 2018, 1–25. [Google Scholar]
- Garzelli, A.; Aiazzi, B.; Alparone, L.; Lolli, S.; Vivone, G. Multispectral pansharpening with radiative transfer-based detail-injection modeling for preserving changes in vegetation cover. Remote Sens. 2018, 10, 1308. [Google Scholar] [CrossRef]
- Restaino, R.; Dalla Mura, M.; Vivone, G. Context-adaptive pan-sharpening based on image segmentation. IEEE Trans. Geosci. Remote Sens. 2017, 55, 753–766. [Google Scholar] [CrossRef]
- Yang, J.; Fu, X.; Hu, Y.; Huang, Y.; Ding, X.; Paisley, J. PanNet: A deep network architecture for pan-sharpening. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1753–1761. [Google Scholar]
- Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G. Pansharpening by convolutional neural networks. Remote Sens. 2016, 8, 594. [Google Scholar] [CrossRef]
- Guo, Y.; Ye, F.; Gong, H. Learning an efficient convolution neural network for pansharpening. Algorithms 2019, 12, 16. [Google Scholar] [CrossRef]
- Wei, Y.; Yuan, Q.; Shen, H.; Zhang, L. Boosting the accuracy of multispectral image pansharpening by learning a deep residual network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1795–1799. [Google Scholar] [CrossRef]
- Jameel, A.; Riaz, M.M.; Ghafoor, A. Guided filter and IHS-based pan-sharpening. IEEE Sens. J. 2015, 16, 192–194. [Google Scholar]
- Zheng, Y.; Dai, Q.; Tu, Z.; Wang, L. Guided image filtering-based pan-sharpening method: A case study of GaoFen-2 imagery. ISPRS Int. J. Geo-Inf. 2017, 6, 404. [Google Scholar] [CrossRef]
- Liu, J.; Liang, S. Pan-sharpening using a guided filter. Int. J. Remote Sens. 2016, 37, 1777–1800. [Google Scholar] [CrossRef]
- Meng, X.; Li, J.; Shen, H.; Zhang, L.; Zhang, H. Pansharpening with a guided filter based on three-layer decomposition. Sensors 2016, 16, 1068. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Park, H.; Kim, D.; Choi, S. Unsupervised change detection of KOMPSAT-3 satellite imagery based on cross-sharpened images by guided filter. Korean J. Remote Sens. 2018, 34, 777–786. [Google Scholar]
- Cho, K.; Kim, Y.; Kim, Y. Disaggregation of Landsat-8 thermal data using guided SWIR imagery on the scene of a wildfire. Remote Sens. 2018, 10, 105. [Google Scholar]
- Jeong, N.; Jung, H.; Oh, K.; Park, S.; Lee, S. Comparison analysis of quality assessment protocols for image fusion of KOMPSAT-2/3/3A. Korean J. Remote Sens. 2016, 32, 453–469. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Otazu, X.; González-Audícana, M.; Fors, O.; Núñez, J. Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2376–2385. [Google Scholar] [CrossRef] [Green Version]
- Crespi, M.; De Vendictis, L. A procedure for high resolution satellite imagery quality assessment. Sensors 2009, 9, 3289–3313. [Google Scholar] [CrossRef] [PubMed]
- Javan, F.D.; Samadzadegan, F.; Reinartz, P. Spatial quality assessment of pan-sharpened high resolution satellite imagery based on an automatically estimated edge based metric. Remote Sens. 2013, 5, 6539–6559. [Google Scholar] [CrossRef]
Sensor | KOMPSAT-3A | |
---|---|---|
Multispectral resolution/size | 2.2 m | |
Panchromatic resolution/size | 0.55 m | |
Wavelength | Panchromatic | 450–900 nm |
Blue | 450–520 nm | |
Green | 520–600 nm | |
Red | 630–690 nm | |
NIR | 760–900 nm |
Site 1 (Salon) | Site 2 (Baotou) | |
---|---|---|
Image size (panchromatic image) | (pixels) | (pixels) |
Image size (multispectral image) | (pixels) | (pixels) |
Acquisition date | 16 July 2017 | 15 October 2017 |
Region | Algorithm | Synthesis Property | Consistency Property | ||||||
---|---|---|---|---|---|---|---|---|---|
ERGAS | SAM | CC | UIQI | ERGAS | SAM | CC | UIQI | ||
Salon (France) | MTF-GLP | 2.838 | 3.417 | 0.948 | 0.749 | 1.473 | 1.327 | 0.987 | 0.910 |
GSA | 2.630 | 3.352 | 0.955 | 0.777 | 1.453 | 1.315 | 0.987 | 0.945 | |
GFNDVI | 2.728 | 3.850 | 0.951 | 0.742 | 1.290 | 1.644 | 0.991 | 0.936 | |
Baotou (China) | MTF-GLP | 0.826 | 0.884 | 0.966 | 0.867 | 0.434 | 0.493 | 0.993 | 0.952 |
GSA | 0.980 | 0.998 | 0.958 | 0.880 | 0.862 | 0.740 | 0.973 | 0.949 | |
GFNDVI | 0.744 | 0.995 | 0.970 | 0.876 | 0.417 | 0.617 | 0.994 | 0.945 |
Region | Algorithm | SNR (dB) | MTF-Nyquist (%) |
---|---|---|---|
Salon | Panchromatic | 67.55 | 17.11 |
MTF-GLP | 52.17 | 14.74 | |
GSA | 51.67 | 16.37 | |
GFNDVI | 63.11 | 17.90 | |
Baotou | Panchromatic | 47.65 | 26.63 |
MTF-GLP | 42.21 | 17.79 | |
GSA | 42.29 | 20.76 | |
GFNDVI | 47.37 | 23.91 |
Algorithm | Band | Average | Max. Value | Min. Value |
---|---|---|---|---|
Method by Equation (9) [5] | Blue | 0.6931 | 2.1160 | 0.1158 |
Green | 1.1217 | 2.5444 | 0.5444 | |
Red | 1.2281 | 2.6077 | 0.6508 | |
NIR | 1.4841 | 2.0614 | 0.0614 | |
Proposed method by Equation (14) | Blue | 0.6929 | 1.0301 | 0.4508 |
Green | 1.1213 | 1.6671 | 0.7295 | |
Red | 1.2276 | 1.8252 | 0.7987 | |
NIR | 1.4847 | 2.0030 | 0.7625 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Park, H.; Seo, D. Pansharpening Using Guided Filtering to Improve the Spatial Clarity of VHR Satellite Imagery. Remote Sens. 2019, 11, 633. https://doi.org/10.3390/rs11060633
Choi J, Park H, Seo D. Pansharpening Using Guided Filtering to Improve the Spatial Clarity of VHR Satellite Imagery. Remote Sensing. 2019; 11(6):633. https://doi.org/10.3390/rs11060633
Chicago/Turabian StyleChoi, Jaewan, Honglyun Park, and Doochun Seo. 2019. "Pansharpening Using Guided Filtering to Improve the Spatial Clarity of VHR Satellite Imagery" Remote Sensing 11, no. 6: 633. https://doi.org/10.3390/rs11060633
APA StyleChoi, J., Park, H., & Seo, D. (2019). Pansharpening Using Guided Filtering to Improve the Spatial Clarity of VHR Satellite Imagery. Remote Sensing, 11(6), 633. https://doi.org/10.3390/rs11060633