Distribution and Morphologies of Transverse Aeolian Ridges in ExoMars 2020 Rover Landing Site
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. TAR Distribution
3.2. Morphology
3.3. Morphometry
4. Results and Discussion
4.1. TAR Distribution
4.2. Morphology
4.3. Morphometry
=> BG = (AB2 − AC2 + BC2)/2BC,
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Craddock, R.A. Aeolian processes on the terrestrial planets: Recent observations and future focus. Progress Phys. Geogr. 2012, 36, 110–124. [Google Scholar] [CrossRef]
- Wilson, S.A.; Zimbelman, J.R. Latitude-dependent nature and physical characteristics of transverse aeolian ridges on Mars. J. Geophys. Res. Planets 2004, 109, E10003. [Google Scholar] [CrossRef]
- McCauley, J.F.; Carr, M.H.; Cutts, J.A.; Hartmann, W.K.; Masursky, H.; Milton, D.J.; Sharp, R.P.; Wilhelms, D.E. Preliminary Mariner 9 report on the geology of Mars. Icarus 1972, 17, 289–327. [Google Scholar] [CrossRef]
- Cutts, J.A.; Blasius, K.R.; Briggs, G.A.; Carr, M.H.; Greeley, R.; Masursky, H. North polar region of Mars: Imaging results from Viking 2. Science 1976, 194, 1329–1337. [Google Scholar] [CrossRef] [PubMed]
- Malin, M.C.; Edgett, K.S. Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. J. Geophys. Res. 2001, 106, 23429–23570. [Google Scholar] [CrossRef] [Green Version]
- Neukum, G.; Jaumann, R. HRSC: The High Resolution Stereo Camera of Mars Express, Mars Express: The Scientific Payload; Wilson, A., Chicarro, A., Eds.; ESA Publications Division: Noordwijk, The Netherlands, 2004; pp. 17–35. ISBN 92-9092-556-6. [Google Scholar]
- Malin, M.C.; Bell, J.F.; Cantor, B.A.; Caplinger, M.A.; Calvin, W.M.; Clancy, R.T.; Edgett, K.S.; Edwards, L.; Haberle, R.M.; James, P.B.; et al. Context Camera Investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- McEwen, A.S.; Eliason, E.M.; Bergstrom, J.W.; Bridges, N.T.; Hansen, C.J.; Delamere, W.A.; Grant, J.A.; Gulick, V.C.; Herkenhoff, K.E.; Keszthelyi, L.; et al. Mars reconnaissance orbiter’s high resolution imaging science experiment (HiRISE). J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Martín-Torres, F.J.; Zorzano, M.P. Are Slope Streaks Indicative of Global-Scale Aqueous Processes on Contemporary Mars? Rev. Geophys. 2019, 57, 48–77. [Google Scholar] [CrossRef]
- Balme, M.; Berman, D.C.; Bourke, M.C.; Zimbelman, J.R. Transverse aeolian ridges (TARs) on Mars. Geomorphology 2008, 101, 703–720. [Google Scholar] [CrossRef]
- Berman, D.C.; Balme, M.R.; Michalski, J.R.; Clark, S.C.; Joseph, E.C. High-resolution investigations of Transverse Aeolian Ridges on Mars. Icarus 2018, 312, 247–266. [Google Scholar] [CrossRef]
- Hayward, R.K.; Mullins, K.F.; Fenton, L.K.; Hare, T.M.; Titus, T.N.; Bourke, M.C.; Colaprete, A.; Christensen, P.R. Mars global digital dune database and initial science results. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef]
- Silvestro, S.; Vaz, D.A.; Fenton, L.K.; Geissler, P.E. Active aeolian processes on Mars: A regional study in Arabia and Meridiani Terrae. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Vaz, D.A.; Silvestro, S. Mapping and characterization of small-scale aeolian structures on Mars: An example from the MSL landing site in Gale Crater. Icarus 2014, 230, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.W.; Doyle, K.B.; Helm, P.J.; Weisman, M.K.; Witbeck, N.E. Global map of eolian features on Mars. J. Geophys. Res. Solid Earth 1985, 90, 2038–2056. [Google Scholar] [CrossRef]
- Geissler, P.E. The birth and death of transverse aeolian ridges on Mars. J. Geophys. Res. Planets 2014, 119, 2583–2599. [Google Scholar] [CrossRef] [Green Version]
- Geissler, P.E.; Wilgus, J.T. The morphology of transverse aeolian ridges on Mars. Aeolian Res. 2017, 26, 63–71. [Google Scholar] [CrossRef]
- Bourke, M.C.; Wilson, S.A.; Zimbelman, J.R. The variability of TARs in troughs on Mars. In Proceedings of the 34th Lunar and Planetary Science Conference, Clear Lake City, Houston, TX, USA, 17–21 March 2003. Abstract number 2090. [Google Scholar]
- Foroutan, M.; Zimbelman, J.R. Mega-ripples in Iran: A new analog for transverse aeolian ridges on Mars. Icarus 2016, 274, 99–105. [Google Scholar] [CrossRef]
- Zimbelman, J.R. Transverse Aeolian ridges on Mars: First results from HiRISE images. Geomorphology 2010, 121, 22–29. [Google Scholar] [CrossRef]
- De Silva, S.L.; Spagnuolo, M.G.; Bridges, N.T.; Zimbelman, J.R. Gravel-mantled megaripples of the Argentinean Puna: A model for their origin and growth with implications for Mars. Geol. Soc. Am. Bull. 2013, 125, 1912–1929. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Barchyn, T.E. A terrestrial analog for transverse aeolian ridges (TARs): Environment, morphometry, and recent dynamics. Icarus 2017, 289, 239–253. [Google Scholar] [CrossRef]
- Foroutan, M.; Steinmetz, G.; Zimbelman, J.R.; Duguay, C.R. Megaripples at Wau-an-Namus, Libya: A new analog for similar features on Mars. Icarus 2019, 319, 840–851. [Google Scholar] [CrossRef]
- Zimbelman, J.R.; Scheidt, S.P. Precision topography of a reversing sand dune at Bruneau Dunes, Idaho, as an analog for transverse aeolian ridges on Mars. Icarus 2014, 230, 29–37. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Barchyn, T.E.; Boulding, A. Morphology of transverse aeolian ridges (TARs) on Mars from a large sample: Further evidence of a megaripple origin? Icarus 2017, 286, 193–201. [Google Scholar] [CrossRef]
- Berman, D.C.; Balme, M.R.; Rafkin, S.C.; Zimbelman, J.R. Transverse aeolian ridges (TARs) on Mars II: distributions, orientations, and ages. Icarus 2011, 213, 116–130. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Martín-Torres, F.J.; Zorzano, M.P. Discovery of recurring slope lineae candidates in Mawrth Vallis, Mars. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef]
- Sullivan, R.; Arvidson, R.; Bell, J.F., III; Gellert, R.; Golombek, M.; Greeley, R.; Herken-hoff, K.; Johnson, J.; Thompson, S.; Whelley, P.; et al. Wind-driven particle mobility on Mars: Insights from Mars exploration observations at ‘‘El Dorado’’ and surroundings at Gusev Crater. J. Geophys. Res. 2008, 113, E06S07. [Google Scholar] [CrossRef]
- Sullivan, R.; Bridges, N.; Herkenhoff, K.; Hamilton, V.; Rubin, D. Transverse Aeolian ridges (TARs) as megaripples: Rover encounters at Meridiani Planum, Gusev, and gale. In Proceedings of the Eighth International Conference on Mars, Pasadena, CA, USA, 14–18 July 2014; LPI Contribution No. 1791. p. 1424. Available online: https://www.hou.usra.edu/meetings/8thmars2014/pdf/1424.pdf (accessed on 10 February 2019).
- Arvidson, R.E.; Iagnemma, K.D.; Maimone, M.; Fraeman, A.A.; Zhou, F.; Heverly, M.C.; Bellutta, P.; Rubin, D.; Stein, N.T.; Grotzinger, J.P.; et al. Mars science laboratory curiosity rover megaripple crossings up to sol 710 in Gale Crater: curiosity rover megaripple crossings. J. Field Robot. 2017, 34, 495–518. [Google Scholar] [CrossRef]
- Balme, M.; Robson, E.; Barnes, R.; Butcher, F.; Fawdon, P.; Huber, B.; Ortner, T.; Paar, G.; Traxler, C.; Bridges, J.; et al. Surface-based 3D measurements of small aeolian bedforms on Mars and implications for estimating ExoMars rover traversability hazards. Planet. Space Sci. 2018, 153, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Arvidson, R.E.; Ashley, J.W.; Bell, J.F.; Chojnacki, M.; Cohen, J.; Economou, T.E.; Farrand, W.H.; Fergason, R.; Fleischer, I.; Geissler, P.; et al. Opportunity Mars Rover mission: overview and selected results from Purgatory ripple to traverses to Endeavour crater. J. Geophys. Res. Planets 2011, 116. [Google Scholar] [CrossRef]
- Arvidson, R.E.; Bell, J.F.; Bellutta, P.; Cabrol, N.A.; Catalano, J.G.; Cohen, J.; Crumpler, L.S.; Des Marais, D.J.; Estlin, T.A.; Farrand, W.H.; et al. Spirit Mars rover mission: overview and selected results from the northern home plate Winter haven to the side of Scamander crater. J. Geophys. Res. Planets 2010, 115. [Google Scholar] [CrossRef]
- Bridges, J.C.; Bowen, A.P.; Fawdon, P.; Balme, M.; Vago, J.; Hauber, E.; Loizeau, D.; Williams, R.M.E.; Sefton-Nash, E.; Turner, S.M.R.; et al. ExoMars 2020 landing site selection and characterization. In Proceedings of the 49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083), The Woodlands, TX, USA, 19–23 March 2018; Available online: https://www.hou.usra.edu/meetings/lpsc2018/pdf/2177.pdf (accessed on 10 February 2019).
- Quantin, C.; Carter, J.; Thollot, P.; Broyer, J.; Lozach, L.; Davis, J.; Grindrod, P.; Pajola, M.; Baratti, E.; Rossato, S.; et al. Oxia Planum, the landing site for ExoMars 2018. In Proceedings of the 47th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 21–25 March 2016; Abstract number 2863. Available online: https://www.hou.usra.edu/meetings/lpsc2016/pdf/2863.pdf (accessed on 10 February 2019).
- Putzig, N.E.; Mellon, M.T. Apparent thermal inertia and the surface heterogeneity of Mars. Icarus 2007, 191, 68–94. [Google Scholar] [CrossRef]
- Nowicki, S.A.; Christensen, P.R. Rock abundance on Mars from the Thermal Emission Spectrometer. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Bourke, M.C.; Balme, M.R.; Beyer, R.A.; Williams, K.K.; Zimbelman, J. A comparison of methods used to estimate the height of sand dunes on Mars. Geomorphology 2006, 81, 440–452. [Google Scholar] [CrossRef] [Green Version]
- Burrough, P.A.; McDonell, R.A. Principles of Geographical Information Systems; Oxford University Press: New York, NY, USA, 1998; p. 190. [Google Scholar]
- Types of Interpolation Methods. Available online: http://www.gisresources.com/types-interpolation-methods_3/ (accessed on 20 November 2018).
- Kirk, R.L.; Howington-Kraus, E.; Rosiek, M.R.; Anderson, J.A.; Archinal, B.A.; Becker, K.J.; Cook, D.A.; Galuszka, D.M.; Geissler, P.E.; Hare, T.M.; et al. Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate Phoenix landing sites. J. Geophys. Res. Planet 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Sam, L.; Martín-Torres, F.J.; Zorzano, M.P. Martian slope streaks as plausible indicators of transient water activity. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Overview of Digital Terrain Models (DTM). Available online: https://www.uahirise.org/dtm/about.php (accessed on 20 November 2018).
- Bridges, D.; Loizeau, D.; Sefton-Nash, E.; Vago, J.; Williams, R.M.E.; Balme, M.; Turner, S.M.R.; Fawdon, P.; Davis, J.M.; The ExoMars Landing Site Selection Working Group. Selection and characterisation of the ExoMars 2020 rover landing sites. In Proceedings of the 48th Lunar and Planetary Science Conference 2017 (LPI Contrib. No. 2378), The Woodlands, TX, USA, 20–24 March 2017; Available online: https://www.hou.usra.edu/meetings/lpsc2017/pdf/2378.pdf (accessed on 10 February 2019).
- Henson, R.A. Remote Characterisation of Mars: Preparation for ExoMars. Master’s Thesis, University of Leicester, Leicester, UK, 2017. Available online: https://lra.le.ac.uk/bitstream/2381/39576/1/2017HENSONRAMPhil.pdf (accessed on 10 February 2019).
- Foroutan, M.; Zimbelman, J.R. Raked Pattern TARs: Evolution and Formation of a Unique Pattern in an Active Sediment Transport Environment. In Proceedings of the 2016 AGU Fall Meeting, San Francisco, CA, USA, December 2016; Available online: http://adsabs.harvard.edu/abs/2016AGUFMEP41B0906F (accessed on 9 April 2019).
- Shockey, K.M.; Zimbelman, J.R. Analysis of transverse aeolian ridge profiles derived from HiRISE images of Mars. Earth Surf. Process. Landf. 2013, 38, 179–182. [Google Scholar] [CrossRef]
Parameter (Unit) | Maximum | Minimum | Mean | Standard Deviation |
---|---|---|---|---|
1. W (m) | 411 | 32.9 | 131.1 | 106.2 |
2. L (m) | 33.2 | 3.7 | 17.6 | 10.1 |
3. a | 13.2 | 4.5 | 7.1 | 2.3 |
4. λ (m) | 61.2 | 10.6 | 37.3 | 11.6 |
5. s | 1.8 | 2.9 | 2.1 | 1.1 |
6. Slope (degree) | - | - | 9.7 (W = >400 m) 11.2 (W = 200–400 m) 10.9 (W = <200 m) | 5.9 (W = >400 m) 6.8 (W = 200–400 m) 5.5 (W = <200 m) |
7. Predominant Orientations | - | - | NE-SW 1, E-W 2 | - |
8. Height (m) | 4.6 | 0.4 | 1.2 | 0.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhardwaj, A.; Sam, L.; Martin-Torres, F.J.; Zorzano, M.-P. Distribution and Morphologies of Transverse Aeolian Ridges in ExoMars 2020 Rover Landing Site. Remote Sens. 2019, 11, 912. https://doi.org/10.3390/rs11080912
Bhardwaj A, Sam L, Martin-Torres FJ, Zorzano M-P. Distribution and Morphologies of Transverse Aeolian Ridges in ExoMars 2020 Rover Landing Site. Remote Sensing. 2019; 11(8):912. https://doi.org/10.3390/rs11080912
Chicago/Turabian StyleBhardwaj, Anshuman, Lydia Sam, F. Javier Martin-Torres, and Maria-Paz Zorzano. 2019. "Distribution and Morphologies of Transverse Aeolian Ridges in ExoMars 2020 Rover Landing Site" Remote Sensing 11, no. 8: 912. https://doi.org/10.3390/rs11080912
APA StyleBhardwaj, A., Sam, L., Martin-Torres, F. J., & Zorzano, M. -P. (2019). Distribution and Morphologies of Transverse Aeolian Ridges in ExoMars 2020 Rover Landing Site. Remote Sensing, 11(8), 912. https://doi.org/10.3390/rs11080912