Impact of Coastal Infrastructure on Ocean Colour Remote Sensing: A Case Study in Jiaozhou Bay, China
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
4. Results and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brando, V.E.; Dekker, A.G. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1378–1387. [Google Scholar] [CrossRef]
- Braga, C.Z.F.; Setzer, A.W.; de Lacerda, L.D. Water quality assessment with simultaneous Landsat-5 TM data at Guanabara Bay, Rio de Janeiro, Brazil. Remote Sens. Environ. 1993, 45, 95–106. [Google Scholar] [CrossRef]
- Blondeau-Patissier, D.; Gower, J.F.; Dekker, A.G.; Phinn, S.R.; Brando, V.E. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog. Oceanogr. 2014, 123, 123–144. [Google Scholar] [CrossRef] [Green Version]
- Carr, M.E. Estimation of potential productivity in Eastern Boundary Currents using remote sensing. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 2001, 49, 59–80. [Google Scholar] [CrossRef]
- Yang, H.; Choi, J.K.; Park, Y.J.; Han, H.J.; Ryu, J.H. Application of the Geostationary Ocean Color Imager (GOCI) to estimates of ocean surface currents. J. Geophys. Res. Oceans 2014, 119, 3988–4000. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, M. Diurnal currents in the Bohai Sea derived from the Korean geostationary ocean color imager. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1437–1450. [Google Scholar] [CrossRef]
- Choi, J.-K.; Park, Y.J.; Ahn, J.H.; Lim, H.-S.; Eom, J.; Ryu, J.-H. GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity. J. Geophys. Res. Oceans 2012, 117, 1–10. [Google Scholar] [CrossRef]
- Moon, J.-E.; Park, Y.-J.; Ryu, J.-H.; Choi, J.-K.; Ahn, J.-H.; Min, J.-E.; Son, Y.B.; Lee, S.J.; Han, H.J.; Ahn, Y.-H. Initial validation of GOCI water products against in situ data collected around Korean peninsula for 2010–2011. Ocean Sci. J. 2012, 47, 261–277. [Google Scholar] [CrossRef]
- Manolakis, D.; Marden, D.; Shaw, G.A. Hyperspectral image processing for automatic target detection applications. Linc. Lab. J. 2003, 14, 79–116. [Google Scholar]
- Ben-Ze’ev, E.; Karnieli, A.; Agam, N.; Kaufman, Y.; Holben, B. Assessing vegetation condition in the presence of biomass burning smoke by applying the Aerosol-free Vegetation Index (AFRI) on MODIS images. Int. J. Remote Sens. 2006, 27, 3203–3221. [Google Scholar] [CrossRef]
- Gao, G.; Wang, X.; Bao, X.; Song, D.; Lin, X.; Qiao, L. The impacts of land reclamation on suspended-sediment dynamics in Jiaozhou Bay, Qingdao, China. Estuar. Coast. Shelf Sci. 2018, 206, 61–75. [Google Scholar] [CrossRef]
- Cui, Q.; Wang, D.; Gong, F.; Pan, D.; Hao, Z.; Wang, T.; Zhu, Q. Intersatellite comparisons and evaluations of three ocean color products along the Zhejiang coast, eastern China. In Proceedings of the SPIE Volume 10422, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Warsaw, Poland, 11–14 September 2017. [Google Scholar] [CrossRef]
- Shen, F.; Zhou, Y.; Peng, X.; Chen, Y. Satellite multi-sensor mapping of suspended particulate matter in turbid estuarine and coastal ocean, China. Int. J. Remote Sens. 2014, 35, 4173–4192. [Google Scholar] [CrossRef]
- Lü, S.; Wang, X.; Han, B. A field study on the conversion ratio of phytoplankton biomass carbon to chlorophyll-a in Jiaozhou Bay, China. Chin. J. Oceanol. Limnol. 2009, 27, 793–805. [Google Scholar] [CrossRef]
- Sun, X.; Sun, S.; Zhang, Y.; Zhang, F. Long-term changes of chlorophyll-a concentration and primary productivity in the Jiaozhou Bay. Oceanol. Limnol. Sin. 2011, 42, 654–664. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-HYFZ201105005.htm (accessed on 1 March 2019). (In Chinese with English Abstract).
- Wu, Y.; Wang, C.; Zhang, Y.; Zhang, Q.; Weng, X. Water exchange and diffusion. In Ecology and Living Resources of Jiaozhou Bay, 1st ed.; Liu, R., Ed.; Science Press: Beijing, China, 1992; pp. 57–72. (In Chinese) [Google Scholar]
- Ding, W.A. Tides and tidal currents. In Ecology and Living Resources of Jiaozhou Bay, 1st ed.; Liu, R., Ed.; Science Press: Beijing, China, 1992; pp. 39–56. (In Chinese) [Google Scholar]
- Chen, C.; Ji, R.; Zheng, L.; Zhu, M.; Rawson, M. Influences of physical processes on the ecosystem in Jiaozhou Bay: A coupled physical and biological model experiment. J. Geophys. Res. Oceans 1999, 104, 29925–29949. [Google Scholar] [CrossRef] [Green Version]
- Sheng, M.; Cui, J.; Shi, Q.; Li, L.; Geng, Y. Analysisi of sediment discharge characteristics of rivers in Jiaozhou Bay, Qingdao City. J. Chin. Hydrol. 2014, 34, 92–96, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Gao, S. ADCP measurements of suspended sediment flux at the entrance to Jiaozhou Bay, western Yellow Sea. Acta Oceanol. Sin. 2013, 32, 96–103. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Jia, J.; Liu, Y.; Gao, J. Remarked morphological change in a large tidal inlet with low sediment-supply. Cont. Shelf Res. 2014, 90, 79–95. [Google Scholar] [CrossRef]
- Liang, S.K.; Pearson, S.; Wu, W.; Ma, Y.J.; Qiao, L.L.; Wang, X.H.; Li, J.M.; Wang, X.L. Research and integrated coastal zone management in rapidly developing estuarine harbours: A review to inform sustainment of functions in Jiaozhou Bay. Chin. Ocean. Coast. Manag. 2015, 116, 470–477. [Google Scholar] [CrossRef]
- Qiao, L.; Liang, S.; Song, D.; Wu, W.; Wang, X.H. Jiaozhou Bay. In Sediment Dynamics of Chinese Muddy Coasts and Estuaries: Physics, Biology and Their Interactions, 1st ed.; Wang, X.H., Ed.; Academic Press: London, UK, 2018; pp. 5–23. ISBN 978-0-1281-1977-8. [Google Scholar]
- Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 2015, 158, 295–310. [Google Scholar] [CrossRef]
- Faure, F.; Coste, P.; Kang, G. The GOCI instrument on COMS mission–The first geostationary ocean color imager. In Proceedings of the SPIE Volume 10566, International Conference on Space Optics (ICSO), Toulouse, France, 14–17 October 2008; Costeraste, J., Armandillo, E., Karafolas, N., Eds.; SPIE: Bellingham, WA, USA, 2008. [Google Scholar]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Oceans 1998, 103, 24937–24953. [Google Scholar] [CrossRef] [Green Version]
- Siswanto, E.; Tang, J.; Yamaguchi, H.; Ahn, Y.H.; Ishizaka, J.; Yoo, S.; Kim, S.W.; Kiyomoto, Y.; Yamada, K.; Chiang, C.; et al. Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas. J. Oceanogr. 2011, 67, 627–650. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Yuan, Y.; Jalón-Rojas, I.; Wang, X.H.; Song, D. Design, construction, and application of a regional ocean database: A case study in Jiaozhou Bay, China. Limnol. Oceanogr. Methods 2019, 17, 210–222. [Google Scholar] [CrossRef]
Band | Centre (nm) | Band-Width (nm) | Main Purpose |
---|---|---|---|
1 | 412 | 20 | Yellow substance and turbidity extraction |
2 | 443 | 20 | Chlorophyll absorption maximum |
3 | 490 | 20 | Chlorophyll and other pigments |
4 | 555 | 20 | Turbidity, suspended sediment |
5 | 660 | 20 | Baseline of fluorescence signal, chlorophyll, suspended sediment |
6 | 680 | 10 | Atmospheric correction, fluorescence signal |
7 | 745 | 20 | Atmospheric correction, baseline of fluorescence signal |
8 | 865 | 40 | Aerosol optical thickness, vegetation, water vapour reference over the ocean |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Jalón-Rojas, I.; Wang, X.H. Impact of Coastal Infrastructure on Ocean Colour Remote Sensing: A Case Study in Jiaozhou Bay, China. Remote Sens. 2019, 11, 946. https://doi.org/10.3390/rs11080946
Yuan Y, Jalón-Rojas I, Wang XH. Impact of Coastal Infrastructure on Ocean Colour Remote Sensing: A Case Study in Jiaozhou Bay, China. Remote Sensing. 2019; 11(8):946. https://doi.org/10.3390/rs11080946
Chicago/Turabian StyleYuan, Yuan, Isabel Jalón-Rojas, and Xiao Hua Wang. 2019. "Impact of Coastal Infrastructure on Ocean Colour Remote Sensing: A Case Study in Jiaozhou Bay, China" Remote Sensing 11, no. 8: 946. https://doi.org/10.3390/rs11080946
APA StyleYuan, Y., Jalón-Rojas, I., & Wang, X. H. (2019). Impact of Coastal Infrastructure on Ocean Colour Remote Sensing: A Case Study in Jiaozhou Bay, China. Remote Sensing, 11(8), 946. https://doi.org/10.3390/rs11080946