Trace Evidence from Mars’ Past: Fingerprinting Transverse Aeolian Ridges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background to the Problem
2.1.1. Dune Processes
2.1.2. Transverse Aeolian Ridges on Mars
2.1.3. The Extraction and Characterization Problem
2.2. Extracting Dune Defects from Remotely Sensed Imagery
2.2.1. Basic Approach
2.2.2. The Underlying Algorithmic Approach of MINDTCT
Input Fingerprint File
Image Map Production
Contrast Enhancement
Low Flow Areas
High Curvature
Quality Map
Binarize Image
Minutiae Detection
Minutiae Quality
Minutiae Output
3. Results
3.1. Application of MINDTCT to Remotely Sensed HiRISE Imagery of Martian TARs
3.2. Extraction Enhancement By Tuning MINDTCT
4. Discussion
5. Conclusions and Suggestions for Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tsoar, H. The Dynamics of Longitudinal Dunes: Final Technical Report; US Army European Research Office: London, UK, 1978. [Google Scholar]
- Tsoar, H. Dynamic processes acting on a longitudinal (seif) sand dune. Sedimentology 1983, 30, 567–578. [Google Scholar] [CrossRef]
- Wasson, R.J.; Fitchett, K.; Mackey, B.; Hyde, R. Large-scale patterns of dune type, spacing and orientation in the Australian continental dunefield. Aust. Geogr. 1988, 19, 89–104. [Google Scholar] [CrossRef]
- Werner, B.T.; Gillespie, D.T. Fundamentally discrete stochastic model for wind ripple dynamics. Phys. Rev. Lett. 1993, 71, 3230–3233. [Google Scholar] [CrossRef] [PubMed]
- Werner, B.T.; Kocurek, G. Bed-form dynamics: Does the tail wag the dog? Geology 1997, 25, 771–774. [Google Scholar] [CrossRef]
- Werner, B.T.; Kocurek, G. Bedform spacing from defect dynamics. Geology 1999, 27, 727–730. [Google Scholar] [CrossRef]
- Andreotti, B.; Fourriere, A.; Ould-Kaddour, F.; Murray, B.; Claudin, P. Giant aeolian dune size determined by the average depth of the atmospheric boundary layer. Nature 2009, 457, 1120. [Google Scholar] [CrossRef]
- Gao, X.; Chen, X.; Cao, J.; Deng, Z.; Liu, C.; Feng, J. A novel method of fingerprint minutiae extraction based on Gabor phase. In Proceedings of the International Conference on Image Processing, Hong Kong, China, 26–29 September 2010; pp. 3077–3080. [Google Scholar]
- Day, M.; Kocurek, G. Pattern similarity across planetary dunefields. Geology 2018, 46, 999–1002. [Google Scholar] [CrossRef]
- Lancaster, N. A Bibliography of Dunes: Earth, Mars, and Venus. 1988, NASA Contractor Report 4149. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880017750.pdf (accessed on 1 May 2019).
- Watson, M.G.A.; Ewing, R.C.; Weitz, C.M.; Lewis, K.W.; Lamb, M.P.; Ehlmann, B.L.; Rubin, D.M. Morphologic diversity of Martian ripples: Implications for large-ripple formation. Geophys. Res. Lett. 2018, 45, 10229–10239. [Google Scholar]
- Greeley, R.; Iversen, J.D. Wind as a Geological Process: On Earth, Mars, Venus and Titan; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Shao, Y. Physics and Modelling of Wind Erosion; Springer Science & Business Media: Berlin, Germany, 2000. [Google Scholar]
- Werner, B.T. A steady-state model of wind-blown sand transport. J. Geol. 1990, 98, 1–17. [Google Scholar] [CrossRef]
- Zimbelman, J.R. Transverse aeolian ridges on Mars: First results from HiRISE images. Geomorphology 2010, 121, 22–29. [Google Scholar] [CrossRef]
- Lancaster, N. Linear dunes on Titan. Science 2006, 312, 702–703. [Google Scholar] [CrossRef]
- Lorenz, R.D.; Wall, S.; Radebaugh, J.; Boubin, G.; Reffet, E.; Janssen, M.; Stofan, E.; Lopes, R.; Kirk, R.; Elachi, C.; et al. The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 2006, 312, 724–727. [Google Scholar] [CrossRef]
- Rubin, D.M.; Hesp, P.A. Multiple origins of linear dunes on Earth and Titan. Nat. Geosci. 2009, 2, 653. [Google Scholar] [CrossRef]
- Silvestro, S.; Vaz, D.A.; Yizhaq, H.; Esposito, F. Dune-like dynamic of Martian aeolian large ripples. Geophys. Res. Lett. 2016, 43, 8384–8389. [Google Scholar] [CrossRef]
- Scuderi, L.A.; Weissmann, G.S.; Hartley, A.J.; Yang, X.; Lancaster, N. Application of Database Approaches to the Study of Earth’s Aeolian Environments: Community Needs and Goals. Aeolian Res. 2017, 27, 79–109. [Google Scholar] [CrossRef]
- Ayrton, H.; Ayrton, W.E. The origin and growth of ripple-mark. Proc. R. Soc. Lond. A 1910, 84, 285–310. [Google Scholar] [CrossRef]
- Evans, O.F. The classification of wave-formed ripple marks. J. Sediment. Res. 1941, 11, 37–41. [Google Scholar] [CrossRef]
- Bagnold, R.A. Motion of waves in shallow water. Interaction between waves and sand bottoms. Proc. R. Soc. Lond. A 1946, 187, 1–18. [Google Scholar] [Green Version]
- Mabbutt, J.A.; Sullivan, M.E. The formation of longitudinal dunes: evidence from the Simpson Desert. Austral. Geogr. 1968, 10, 483–487. [Google Scholar] [CrossRef]
- Goudie, A.S. Statistical laws and dune ridges in southern Africa. Geogr. J. 1969, 135, 404–406. [Google Scholar] [CrossRef]
- Bullard, J.E.; Thomas, D.S.G.; Livingstone, I.; Wiggs, G.F.S. Analysis of linear sand dune morphological variability, southwestern Kalahari Desert. Geomorphology 1995, 11, 189–203. [Google Scholar] [CrossRef]
- Werner, B.T. Eolian dunes: Computer simulations and attractor interpretation. Geology 1995, 23, 1107–1110. [Google Scholar] [CrossRef]
- Telfer, M.W.; Hesse, P.P. Palaeoenvironmental reconstructions from linear dunefields: Recent progress, current challenges and future directions. Quat. Sci. Rev. 2013, 78, 1–21. [Google Scholar] [CrossRef]
- Telfer, M.W.; Fyfe, R.M.; Lewin, S. Automated mapping of linear dunefield morphometric parameters from remotely-sensed data. Aeolian Res. 2015, 19, 215–224. [Google Scholar] [CrossRef]
- Berry, J.; Stoney, D.A. History and Development of Fingerprinting. In Advances in Fingerprint Technology, 22nd ed.; Lee, H.C., Gaensslen, R.E., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 13–52. [Google Scholar]
- Watson, C.I.; Garris, M.D.; Tabassi, E.; Wilson, C.L.; McCabe, R.M.; Stanley, J.S.; Ko, K. User’s Guide to NIST Biometric Image Software (NBIS), National Institute of Standards and Technology, 2006. Available online: http://fingerprint.nist.gov/NFIS/ (accessed on 1 May 2019).
- Watson, C.I.; Garris, M.D.; Tabassi, E.; Wilson, C.L.; McCabe, R.M.; Janet, S.; Ko, K. User’s Guide to NIST Biometric Image Software (NBIS); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010.
- Hong, L.; Jain, A. Classification of fingerprint images. In Proceedings of the Scandinavian Conference on Image Analysis, Kangerlussuaq, Greenland, 7–11 June 1999; Volume 2, pp. 665–672. [Google Scholar]
- Bansal, R.; Sehgal, P.; Bedi, P. Effective morphological extraction of true fingerprint minutiae based on the hit or miss transform. Int. J. Biom Biostat. 2010, 4, 71–85. [Google Scholar]
- Bansal, R.; Sehgal, P.; Bedi, P. Minutiae Extraction from Fingerprint Images—A Review. Int. J. Comput. Sci. Issues 2011, 8, 74–85. [Google Scholar]
- Akinyokun, O.C.; Adegbeyeni, E.O. Scientific Evaluation of the Process of Scanning and Forensic Analysis of Fingerprints on Ballot Papers. Available online: https://www.abacademies.org/Public/Proceedings/Proceedings24/ALERI%20 Proceedings.pdf (accessed on 4 May 2019).
- Jiang, X.; Yau, W.Y. Fingerprint minutiae matching based on the local and global structures. In Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain, 3–7 September 2000. [Google Scholar]
- Hong, L.; Wan, Y.; Jain, A.K. Fingerprint image enhancement: Algorithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 20, 777–789. [Google Scholar] [CrossRef]
- Trivedi, A.K.; Thounaojam, D.M.; Pal, S. A robust and non-invertible fingerprint template for fingerprint matching system. Forensic Sci. Int. 2018, 288, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Babatunde, I.G.; Akinyokun, O.C.; Kayode, A.B.; Olatunbosun, O. Adaptive and faster approach to fingerprint minutiae extraction and validation. Int. J. Comput. Sci. Secur. 2011, 5, 414–424. [Google Scholar]
- NIST Special Database 4: NIST 8-Bit Gray Scale Images of Fingerprint Image Groups (FIGS). National Institute of Standards and Technology, U.S. Department of Commerce. Available online: https://www.nist.gov/srd/nist-special-database-4 (accessed on 11 December 2018).
- Fryberger, S.G.; Dean, G. A Study of Global Sand Seas; US Geological Survey Professional Paper 1052; 1979; pp. 137–169. Available online: https://pubs.er.usgs.gov/publication/pp1052 (accessed on 11 December 2018).
- Bristow, C.S.; Bailey, S.D.; Lancaster, N. The sedimentary structure of linear sand dunes. Nature 2000, 406, 56–59. [Google Scholar] [CrossRef]
- Andreotti, B.; Claudin, P.; Douady, S. Selection of dune shapes and velocities. Part 1: Dynamics of sand, wind and barchans. Eur. Phys. J. 2002, B28, 321–339. [Google Scholar] [CrossRef]
- Lancaster, N. Geomorphology of Desert Dunes; Routledge: London, UK, 1995. [Google Scholar]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes; Dover Publications: Mineola, NY, USA, 2012; 265p. [Google Scholar]
- Livingstone, I. Geomorphological significance of windflow patterns over a Namib linear dune. In Aeolian Geomorphology; Allen & Unwin: Crows Nest, Australia, 1986; pp. 97–112. [Google Scholar]
- Wasson, R.J.; Hyde, R. Factors determining desert dune type. Nature 1983, 304, 337–339. [Google Scholar] [CrossRef]
- Livingstone, I. Monitoring surface change on a Namib linear dune. Earth Surf. Process. Landf. 1989, 14, 317–332. [Google Scholar] [CrossRef]
- Lancaster, N. The Namib Sand Sea: Dune Forms, Processes, and Sediments; CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- Lancaster, N. Geomorphology of Desert Dunes; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Kocurek, G.; Ewing, R.C.; Mohrig, D. How do bedform patterns arise? New views on the role of bedform interactions within a set of boundary conditions. Earth Surf. Process. Landf. 2010, 35, 51–63. [Google Scholar] [CrossRef]
- Ewing, R.C.; Kocurek, G.A. Aeolian dune interactions and dune-field pattern formation: White Sands Dunefield, New Mexico. Sedimentology 2010, 57, 1199–1219. [Google Scholar] [CrossRef]
- Ewing, R.C.; Kocurek, G. Aeolian dune-field pattern boundary conditions. Geomorphology 2010, 114, 175–187. [Google Scholar] [CrossRef]
- Landry, W.; Werner, B.T. Computer simulations of self-organized wind ripple patterns. Phys. D 1994, 77, 238–260. [Google Scholar] [CrossRef]
- Anderson, R.S. Eolian ripples as examples of self-organization in geomorphological systems. Earth Sci. Rev. 1990, 29, 77–96. [Google Scholar] [CrossRef]
- McLean, S.R. The stability of ripples and dunes. Earth Sci. Rev. 1990, 29, 131–144. [Google Scholar] [CrossRef]
- Rubin, D.; Hunter, R. Bedform alignment in directionally varying flows. Science 1987, 237, 276–278. [Google Scholar] [CrossRef]
- Courrech du Pont, S.; Narteau, C.; Gao, X. Two modes for dune orientation. Geology 2014, 42, 743–746. [Google Scholar] [CrossRef]
- Greeley, R.; Lancaster, N.; Lee, S.; Thomas, P. Martian aeolian processes, sediments, and features. In Mars; University of Arizona Press: Tucson, AZ, USA, 1992; pp. 730–766. [Google Scholar]
- Anderson, F.S.; Greeley, R.; Xu, P.; Lo, E.; Blumberg, D.G.; Haberle, R.M.; Murphy, J.R. Assessing the Martian surface distribution of aeolian sand using a Mars general circulation model. J. Geophys. Res. Planets 1999, 104, 18991–19002. [Google Scholar] [CrossRef] [Green Version]
- Bridges, N.; Geissler, P.; Silvestro, S.; Banks, M. Bedform migration on Mars: Current results and future plans. Aeolian Res. 2013, 9, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.P.; van der Bogert, C.H.; Pathare, A.V.; Michael, G.G.; Kirchoff, M.R.; Hiesinger, H. Dating very young planetary surfaces from crater statistics: A review of issues and challenges. Meteorit. Planet. Sci. 2018, 53, 554–582. [Google Scholar] [CrossRef]
- Berman, D.C.; Balme, M.R.; Rafkin, S.C.; Zimbelman, J.R. Transverse aeolian ridges (TARs) on Mars II: distributions, orientations, and ages. ICARUS 2011, 213, 116–130. [Google Scholar] [CrossRef]
- Berman, D.C.; Balme, M.R.; Michalski, J.R.; Clark, S.C.; Joseph, E.C. High-resolution investigations of Transverse Aeolian Ridges on Mars. ICARUS 2018, 312, 247–266. [Google Scholar] [CrossRef]
- Bourke, M.C.; Wilson, S.A.; Zimbelman, J.R. The Variability of TARs in Troughs on Mars. Available online: https://www.researchgate.net/publication/23703055_The_Variability_of_Transverse_Aeolian_Ripples_in_Troughs_on_Mars (accessed on 1 May 2019).
- Wilson, S.A. Transverse Aeolian Ridge (TAR). Encyclopedia of Planetary Landforms. Available online: https://doi.org/10.1007/978-1-4614-3134-3 (accessed on 1 May 2019).
- Lapotre, M.G.A.; Ewing, R.C.; Lamb, M.P.; Fischer, W.W.; Grotzinger, J.P.; Rubin, D.M.; Lewis, K.W.; Ballard, M.J.; Day, M.; Gupta, S.; et al. Large wind ripples on Mars: A record of atmospheric evolution. Science 2016, 353, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Zimbelman, J.R.; Williams, S.H. Eolian dunes and deposits in the western United States as analogs to wind-related features on Mars. In The Geology of Mars: Evidence from Earth-Based Analogs; Cambridge University Press: Cambridge, UK, 2007; pp. 232–264. [Google Scholar]
- Zimbelman, J.R.; Scheidt, S.P. Topographic Profiles across a Large Reversing Dune, to Aid in Evaluating the Reversing Dune Hypothesis for TARs on Mars. Available online: https://www.lpi.usra.edu/meetings/dunes2012/pdf/7003.pdf (accessed on 1 May 2019).
- Zimbelman, J.R.; Scheidt, S.P. Precision topography of a reversing sand dune at Bruneau Dunes, Idaho, as an analog for Transverse Aeolian Ridges on Mars. ICARUS 2014, 230, 29–37. [Google Scholar] [CrossRef]
- Zimbelman, J.R.; Williams, S.H.; Johnston, A.K. Cross-sectional profiles of sand ripples, megaripples, and dunes: A method for discriminating between formational mechanisms. Earth Surf. Proc. Landf. 2012, 37, 1120–1125. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Bandfield, J.L.; Becker, S.K. Periodic bedrock ridges on Mars. J. Geophys. Res. 2012, 117, E03005. [Google Scholar] [CrossRef]
- Zimbelman, J.R. Spatial resolution and the geologic interpretation of Martian morphology: Implications for subsurface volatiles. ICARUS 1987, 71, 257–267. [Google Scholar] [CrossRef]
- Edgett, K.S.; Parker, T.J. “Bright” Aeolian Dunes on Mars: Viking Orbiter Observations. In Proceedings of the Lunar and Planetary Science Conference XXIX, Houston, TX, USA, 16–20 March 1998. [Google Scholar]
- Thomas, P.C.; Malin, M.C.; Carr, M.H.; Danielson, G.E.; Davies, M.E.; Hartmann, W.K.; Ingersoll, A.P.; James, P.B.; McEwen, A.S.; Soderblom, L.A.; et al. Bright dunes on Mars. Nature 1999, 397, 592. [Google Scholar] [CrossRef]
- Malin, M.C.; Edgett, K.S. Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. J. Geophys. Res. 2001, 106, 23429–23570. [Google Scholar] [CrossRef]
- Foroutan, M.; Zimbelman, J.R. Mega-ripples in Iran: A new analog for transverse aeolian ridges on Mars. ICARUS 2016, 274, 99–105. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Barchyn, T.E. A terrestrial analog for transverse aeolian ridges (TARs): Environment, morphometry, and recent dynamics. ICARUS 2017, 289, 239–253. [Google Scholar] [CrossRef]
- Derickson, D.; Kocurek, G.; Ewing, R.C.; Bristow, C. Origin of a complex and spatially diverse dune-field pattern, Algodones, southeastern California. Geomorphology 2008, 99, 186–204. [Google Scholar] [CrossRef]
- Al-Masrahy, M.A.; Mountney, N.P. Remote sensing of spatial variability in aeolian dune and interdune morphology in the Rub’ Al-Khali, Saudi Arabia. Aeolian Res. 2013, 11, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Varma, S.; Shah, V.; Banerjee, B.; Buddhiraju, K.M. Change detection of desert sand dunes: a remote sensing approach. Adv. Remote Sens. 2014, 3, 10–22. [Google Scholar] [CrossRef]
- Fagan, J.F. The origins of facial pattern recognition. In Psychological Development from Infancy: Image to Intention; Routledge: London, UK, 2017. [Google Scholar]
- Jain, A.K.; Duin, R.P.; Mao, J. Statistical pattern recognition: A review. IEEE Trans. Pattern. Anal. Mach. Intell. 2000, 22, 4–37. [Google Scholar] [CrossRef]
- Webb, A.R. Statistical Pattern Recognition; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Shih, F.Y. Image Processing and Pattern Recognition: Fundamentals and Techniques; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern. Anal. Mach. Intell. 1986, 6, 679–698. [Google Scholar] [CrossRef]
- Kundu, A. Robust edge detection. Pattern Recognit. 1990, 23, 423–440. [Google Scholar] [CrossRef]
- Shrivakshan, G.T.; Chandrasekar, C. A comparison of various edge detection techniques used in image processing. Int. J. Comput. Sci. Issues 2012, 9, 269–276. [Google Scholar]
- Al-Amri, S.S.; Kalyankar, N.V.; Khamitkar, S.D. Image segmentation by using edge detection. Int. J. Comput. Sci. Eng. 2010, 2, 804–807. [Google Scholar]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Mather, P.; Tso, B. Classification Methods for Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Peralta, D.; Galar, M.; Triguero, I.; Miguel-Hurtado, O.; Benitez, J.M.; Herrera, F. Minutiae filtering to improve both efficacy and efficiency of fingerprint matching algorithms. Eng. Appl. Artif. Intell. 2014, 32, 37–53. [Google Scholar] [CrossRef]
- Peralta, D.; Galar, M.; Triguero, I.; Paternain, D.; García, S.; Barrenechea, E.; Benítez, J.M.; Bustince, H.; Herrera, F. A survey on fingerprint minutiae-based local matching for verification and identification: Taxonomy and experimental evaluation. Inf. Sci. 2015, 315, 67–87. [Google Scholar] [CrossRef]
- Peralta, D.; García, S.; Benitez, J.M.; Herrera, F. Minutiae-based fingerprint matching decomposition: methodology for big data frameworks. Inf. Sci. 2017, 408, 198–212. [Google Scholar] [CrossRef]
- Stock, R.M.; Swonger, C.W. Development and Evaluation of a Reader of Fingerprint Minutiae; Cornell Aeronautical Laboratory: Buffalo, NY, USA, 1969. [Google Scholar]
- Yager, N.; Amin, A. Fingerprint classification: a review. Pattern. Anal. Appl. 2004, 7, 77–93. [Google Scholar] [CrossRef]
- McEwen, A.S.; Eliason, E.M.; Bergstrom, J.W.; Bridges, N.T.; Hansen, C.J.; Delamere, W.A.; Grant, J.A.; Gulick, V.C.; Herkenhoff, K.E.; Keszthelyi, L.; et al. Mars reconnaissance orbiter’s high resolution imaging science experiment (HiRISE). J. Geophys. Res. Planets 2007, 112, 40. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [Green Version]
- Balme, M.R.; Bourke, M.C. Preliminary results from a new study of transverse aeolian ridges (TARS) on Mars. In Proceedings of the 36th Lunar and Planetary Science Conference, Houston, TX, USA, 14–18 March 2006. [Google Scholar]
- Balme, M.; Berman, D.C.; Bourke, M.C.; Zimbelman, J.R. Transverse Aeolian Ridges (TARs) on Mars. Geomorphology 2008, 101, 703–720. [Google Scholar] [CrossRef] [Green Version]
- Maio, D.; Maltoni, D. Direct gray-scale minutiae detection in fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, S.; Aladjem, M.; Kogan, D. Fingerprint image enhancement using filtering techniques. Real-Time Imaging 2002, 8, 227–236. [Google Scholar] [CrossRef]
- Peralta, D.; Triguero, I.; Sanchez-Reillo, R.; Herrera, F.; Benítez, J.M. Fast fingerprint identification for large databases. Pattern Recognit. 2014, 47, 588–602. [Google Scholar] [CrossRef]
- Peralta, D.; Triguero, I.; García, S.; Saeys, Y.; Benitez, J.M.; Herrera, F. Distributed incremental fingerprint identification with reduced penetration rates using a hierarchical classification based on feature fusion and selection. Knowl-Based. Syst. 2017, 126, 91–103. [Google Scholar] [CrossRef]
- Jain, A.; Hong, L.; Bolle, R. On-line fingerprint verification. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 302–314. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.A.; Zimbelman, J.R. Latitude-dependent nature and physical characteristics of transverse aeolian ridges on Mars. J. Geophys. Res. Planets 2004, 109, E10003. [Google Scholar] [CrossRef]
- Jiang, X.; Yau, W.; Ser, W. Detecting the fingerprint minutiae by adaptive tracing the gray-level ridge. Pattern Recognit. 2001, 34, 999–1013. [Google Scholar] [CrossRef]
- Jain, A.; Prabhakar, S.; Hong, L. A multichannel approach to fingerprint classification. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 348–359. [Google Scholar] [CrossRef] [Green Version]
- Chikkerur, S.; Govindaraju, V.; Pankanti, S.; Bolle, R.M.; Ratha, N.K. Novel Approaches for Minutiae Verification in Fingerprint Images. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.8773&rep=rep1&type=pdf (accessed on 1 May 2019).
- Chang, J.H.; Fan, K.C. Fingerprint ridge allocation in direct gray-scale domain. Pattern Recognit. 2001, 34, 1907–1925. [Google Scholar] [CrossRef] [Green Version]
- Harper, J.T.; Humphrey, N.F.; Pfeffer, W.T. Crevasse patterns and the strain-rate tensor: a high-resolution comparison. J. Glaciol. 1998, 44, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Herzfeld, U.C.; Zahner, O. A connectionist-geostatistical approach to automated image classification, applied to the analysis of crevasse patterns in surging ice. Comput. Geosci. 2001, 27, 499–512. [Google Scholar] [CrossRef]
- Swift, D.A.; Jones, A.H. Going against the flow: Testing the hypothesis of pulsed axial glacier flow. Earth Surf. Process. Landf. 2018, 43, 2754–2761. [Google Scholar] [CrossRef]
- Perron, J.T.; Myrow, P.M.; Huppert, K.L.; Koss, A.R.; Wickert, A.D. Ancient record of changing flows from wave ripple defects. Geology 2018, 46, 875–878. [Google Scholar] [CrossRef]
- Sarkar, K.; Mazumder, B.S. Space time evolution of sand bed topography and associated flow turbulence: experiments with statistical analysis. Stoch. Environ. Res. Risk Assess. 2018, 32, 501–525. [Google Scholar] [CrossRef]
Output Type | Output Description |
---|---|
Direction Map | 16 integer bidirectional units. A value of −1 in this map represents a neighborhood where no valid ridge flow was determined. |
High-Curvature Map | Cell values of 1 represent 8 × 8 pixel neighborhoods in the image that are located within a high-curvature region, otherwise cell values are set to 0. |
Low-Contrast Map | Cell values of 1 represent 8 × 8 pixel neighborhoods in the image that are located within a low-contrast region, otherwise cell values are set to 0. |
Low-Flow Map | Cell values of 1 represent 8 × 8 pixel neighborhoods in the image that are located within a region where a dominant directional frequency could not be determined, otherwise cell values are set to 0. |
Quality Map | Five discrete levels of quality. Each value in the map representing an 8 × 8 pixel neighborhood in the fingerprint image. A cell value of 4 represents highest quality, while a cell value of 0 represents lowest possible quality. |
Minutiae Detection Results | A text file with the minutiae number, x,y location, minutiae direction, quality and type (bifurcation (BIF) or ridge ending (RIG)) |
Crest Pattern | Topographic Control |
---|---|
Simple | Confined |
Forked | Controlled |
Sinuous | Influenced |
Barchan-like | Independent |
Networked |
Balme et al. [101] Crest Pattern Categories | Expected Defect Properties | ||||
---|---|---|---|---|---|
Termination Frequency | Termination Orientation | Bifurcation Frequency | Bifurcation Orientation | Termination: Bifurcation Ratio | |
Simple | Many | Unidirectional | None | N/A | Very high |
Forked | Many | Unidirectional | Few | Unidirectional | High |
Sinuous | Many | Unidirectional | Few | Unidirectional | Intermediate |
Barchan-like | Few | Bidirectional | Many | Bidirectional | Low |
Networked | Few | None | Many | Bidirectional | Very low |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scuderi, L.; Nagle-McNaughton, T.; Williams, J. Trace Evidence from Mars’ Past: Fingerprinting Transverse Aeolian Ridges. Remote Sens. 2019, 11, 1060. https://doi.org/10.3390/rs11091060
Scuderi L, Nagle-McNaughton T, Williams J. Trace Evidence from Mars’ Past: Fingerprinting Transverse Aeolian Ridges. Remote Sensing. 2019; 11(9):1060. https://doi.org/10.3390/rs11091060
Chicago/Turabian StyleScuderi, Louis, Timothy Nagle-McNaughton, and Joshua Williams. 2019. "Trace Evidence from Mars’ Past: Fingerprinting Transverse Aeolian Ridges" Remote Sensing 11, no. 9: 1060. https://doi.org/10.3390/rs11091060
APA StyleScuderi, L., Nagle-McNaughton, T., & Williams, J. (2019). Trace Evidence from Mars’ Past: Fingerprinting Transverse Aeolian Ridges. Remote Sensing, 11(9), 1060. https://doi.org/10.3390/rs11091060